
Finite Size Corrections for EVS (i.i.d. variables)

I. INTRODUCTION

So far, we have considered only the limiting (batch size
goes to infinity, N → ∞) behavior. In reality, N is finite.
For example, when the EVS of the brightness of galaxies
are investigated, the number of galaxies in the Hercules
galaxy cluster (see Fig.4. in Lecture 5-6) is N ≈ 100.
Thus we should consider corrections to the limit distribu-
tions. Up to the first correction we should seek the EVS
large-N distribution for the maximum value P (x,N) in
the form

P (x,N) = P (x) + q(N)Φ1(x) (1)

where P (x) is the limit distribution, Φ1(x) is the 1st

shape correction, and q(N) → 0 for N → ∞.

The convergence to the limit distribution may be fast
or slow as shown in Figs.1-4 for exponential and gaussian
parents.
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FIG. 1: Distribution of the largest for an exponential [p(y) =
e−x] parent for various batch sizes, N . The limit distribution
(Fisher-Tippett-Gumbel) is shown by red line. Note the fast
convergence.

The lower panels in Figs. 2 and 4 suggests that

q(N) ∼ 1

N
and q(N) ∼ 1

lnN
(2)

for exponential and gaussian parents, respectively. One
can also see on those figures that well defined shape cor-
rections Φ1(x) with recognizable features appear for large
N .
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FIG. 2: Corrections to the limit distribution for an exponen-
tial [p(y) = e−x] parent for various batch size, N . Note the
1/N scaling of the shape correction.

In this lecture, we shall describe how to calculate di-
rectly q(N) and Φ1(x) for the case of exponential parent
(the easiest case to calculate).

II. FINITE-SIZE CORRECTIONS IN CASE OF

EXPONENTIAL PARENT

In case of an exponential parent [p(y) = e−y, y ≥ 1],
the integrated parent is given by

µ(z) = 1 − e−z . (3)
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Thus the integrated distribution for the largest out of a
batch of size N is obtained as

M(z,N) = µN (z) =
(

1 − e−z
)N

. (4)
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FIG. 3: Distribution of the largest for a gaussian [ p(y) ∼

e−x
2

] parent for various batch sizes, N . The limit distribution
(Fisher-Tippett-Gumbel) is shown by red line. Note the slow
convergence.

Now, we have to make the appropriate change of vari-
ables

z = aNx + bn (5)

and to obtain the final result in a form which is easy to
compare with the experiments we shall use the standard-
ization where

〈x〉 = 0 , 〈x2〉 = 1 . (6)

This standardization corresponds to plotting
the experimental results against the variable
(x − 〈x〉)/

√

〈x2〉 − 〈x〉2.
With the above standardization, the coefficients aN

and bN are determined as

〈z〉 = aN 〈x〉 + bN = bN (7)

and

〈z2〉 − 〈z〉2 = a2
N 〈x2〉 = a2

N . (8)

Thus we have to calculate aN and bN by evaluating
〈z2〉 and 〈z〉. Since P (z,N) is given by

P (z,N) = Ne−z(1 − e−z)N−1 (9)

we have to calculate the following integrals

bN = N

∫

∞

0

ze−z(1 − e−z)N−1dz (10)

a2
N = N

∫

∞

0

z2e−z(1 − e−z)N−1dz . (11)
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FIG. 4: Corrections to the limit distribution for a gaussian

[ p(y) ∼ e−x
2

] parent. Note the 1/ ln N scaling of the shape
correction.

We shall carry out in some detail the calculation of bN .
From our previous experience with exponential parent,
we know that the EVS distribution shifts with N as ln N .
Thus a natural change of variable to evaluate the integral
is

z = u + lnN (12)
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which allows to write (10) as

bN = lnN +

∞
∫

− ln N

ue−ue(N−1) ln (1−e−u/N)du . (13)

Expanding the exponential, to order 1/N , one finds

bN = lnN +

∞
∫

− ln N

ue−u−e−u

du

[

1 +
2e−u − e−2u

2N

]

.

(14)
As one can easily see, the lower limit of the integral can be
moved to −∞ since there the function to be integrated is
of the order of exp (lnN − exp lnN) ∼ exp (−N). Then
the needed integrals can be evaluated (or looked up in
integral tables):

∞
∫

−∞

ue−u−e−u

du = γE (15)

1

N

∞
∫

−∞

ue−2u−e−u

du =
1

N
(γE − 1) (16)

− 1

2N

∞
∫

−∞

ue−3u−e−u

du = − 1

N
(γE − 3/2) (17)

where γE ≈ 0.577 is the Euler constant.
Collecting now the terms in (14), we obtain

bN = lnN + γE +
1

2N
(18)

The calculation of a2
N is of similar difficulty, and all

the integrals can be calculated by hand or can be found
in the integral tables. The result for a2

N is

a2
N = 〈z2〉 − 〈z〉2 =

π2

6
− 1

N
, (19)

and so the final result to order 1/N for aN is as follows

aN =
π√
6
− 1

2N

√
6

π
, (20)

Now we take the expression (9) for P (z,N) and and make
the change of variables z = aNx + bN

P (x,N) = aNP (z,N)

= aNNe−aN x−bN (1 − e−aN x−bN )N−1 (21)

and expand everything to order 1/N . This is a bit tedious
calculation but, with some patience, can be done. We
write out only the final result:

P (x,N) = P (x) +
1

N
Φ1(x) , (22)

where P (x) is the Fisher-Tippett-Gumbel distribution
with the 〈x〉 = 0 and 〈x2〉 = 0 standardization

P (x) =
π√
6

exp

[

− π√
6
x − γE − e

−
π
√

6
x−γE

]

(23)

and the shape correction is given by

Φexp(x) =
1

2
P (x)

[

− 6

π2
− 1 +

√
6

π
x (24)

+

(

3 −
√

6

π
x

)

e
−

π
√

6
x−γE − e

−
2π
√

6
x−2γE

]

.

As we can see, the finite-size correction for an exponential
parent is small for relatively not too large N , since the
convergence rate is 1/N . Fig.2 shows this convergence as
well as the shape correction (red line, denoted by P1(x)).

III. FINITE-SIZE CORRECTION FOR

GAUSSIAN PARENT

The calculation is somewhat more tedious as compared
to the exponential case. The convergence is slow, we have

P (x,N) = P (x) +
1

lnN
ΦG(x) , (25)

where P (x) is the same limit distribution as before (23),
and the Gauss shape correction is given by

ΦG(x) =
1

2
P (x)

[√
6

π
x − 6

π2
ζ(3)+ (26)

(

−π2

12
x2 +

√
6

π
ζ(3)x +

π2

12

)

(

1 − e
−

π
√

6
x−γE

)

]

.

where ζ is the zeta function and ζ(3) ≈ 1.20.
The slow convergence and the shape correction can be

seen in Fig.4.

IV. CORRECTIONS IN GENERAL

The general case and the questions related to the con-
vergence rates can be treated through renormalization
group methods. In references [1, 2], one can find a de-
tailed exposition and, in case of doubts, you can consult
the authors.

Interesting and physically relevant cases we should
mention are the ”modified gaussian” parents

p(y) ∼ e−yβ

yα
, y > 0 . (27)

Unless β = 1 and α = 0, the correction is proportional to
ΦG(x). The convergence, however, depends on the above
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exponents. For example, (25) and (27) remains valid for
β = 2 and α = 1 but we have

P (x,N) = P (x) +
1

ln2 N
ΦG(x) for α = 1 , β = 1 .

(28)
Fig.5 displays the results of EVS for galaxy luminosi-

ties [3]. It shows an example where taking into account

the finite-size corrections was important in understand-
ing the deviations from the expected FTG limit distri-
bution. In this case there was another correction due to
variable batch size. The variable batch size is an interest-
ing problem of EVS but we do not have time to discuss
it in the present course.
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FIG. 5: The normalized maximum luminosity histograms (black circles) for Nside = 16, 32, 64 (from up to down) for two
galaxy samples compared to the limit distribution FTG (solid red line) in scaled variables (〈x〉 = 0 and σ = 1) while blue
crosses are the residuals to the FTG. For the Main Galaxy Sample (MGS), the solid magenta curves show q(N)P1(x) + P 1(x),
i.e., the first order finite size correction for the Schechter parent added to the variable batch size correction. The Large Red
Galaxies (LRG) curve is different, in the sense that the parent is FTG and the finite size corrections do not appear, having
corrections only due to the variable batch size (P 1(x)). The black solid curves are the simulations that result from using the
experimentally given luminosity distributions and sample size distributions.


