Nonequilibrium Dynamics and Fronts in Spin Chains

Questions: How to construct nonequilibrium steady states for quantum systems? What are the general and distinct features of these steady states? How do quantum systems relax to the steady state?

- **Aim:** Understand first homogeneous steady states
- **Results:** Exact solutions (and numerical evaluations): transverse Ising model with J_E transverse XX model with $J_E \rightarrow J_M$ steady state phase diagrams correlations probability distributions relaxation -- scaling structure of fronts

Transverse Ising model with energy flux

$$\hat{H}_{I} = -\sum_{n=1}^{N} S_{n}^{x} S_{n+1}^{x} - \frac{h}{2} \sum_{n=1}^{N} S_{n}^{z}$$

Energy flux

$$\hat{J}_{E} = \frac{h}{4} \sum_{n=1}^{N} \left(S_{n}^{x} S_{n+1}^{y} - S_{n}^{y} S_{n+1}^{x} \right)$$

$$\varepsilon_{n} = -\frac{1}{2} S_{n}^{x} (S_{n-1}^{x} + S_{n+1}^{x}) - hS_{n}^{z}$$

$$\varepsilon_{n} = i[\hat{H}, \varepsilon_{n}] = j_{E,n-1 \to n} - j_{E,n \to n+1}$$

$$\log a energy flux$$

Find

$$\langle \psi \mid \hat{H}_{I} \mid \psi \rangle = \min$$

 $\langle \psi \mid \hat{J}_{E} \mid \psi \rangle = \mathbf{J}_{E}$

Ground state:

$$\hat{H} = \hat{H}_{I} + \lambda \hat{J}_{E}$$

Nonequilibrium phase diagram

PRL 78, 167 (1997)

Probability distributions (zero flux)

PRE 67, 056129 (2003)

Nonordering field: M_z

$$M_z = \sum S_n^z$$

 $P(M_z)$ is Gaussian even at criticality

 $\left[\langle S_{j}^{z}S_{j+n}^{z}\rangle - \langle S_{j}^{z}\rangle\langle S_{j+n}^{z}\rangle\right]_{h=h_{c}} \propto 1/n^{2}$

Ordering field:

$$A_x = \sum S_n^x$$

Numerics:

Boundary condition dependence of the scaling functions

• $P(M_z)$ is Gaussian (exact)

Parameters of the Gaussian at small j_E

	$\langle {M}_z angle_{j_E} - \langle {M}_z angle_{j_E=0}$	$\langle (\delta M_z)^2 \rangle_{j_E} - \langle (\delta M_z)^2 \rangle_{j_E=0}$	$j_{\scriptscriptstyle E}$
<i>h</i> > 1	$-arepsilon^{1/2} \propto j_E$	$-arepsilon^{1/2} \propto j_E$	$\boldsymbol{\epsilon}^{1/2}$
h = 1	$-\epsilon \propto j_{\scriptscriptstyle E}$	$-arepsilon^{1/2} \propto j_E^{1/2}$	3
<i>h</i> < 1	$-arepsilon^{3/2} \propto j_E^3$	$-arepsilon^{1/2} \propto j_E$	$\epsilon^{1/2}$

Decrease of $\langle M_z \rangle$ and $\langle (\delta M_z)^2 \rangle$ is required for increasing j_E

 $\hat{j}_{E} \propto S_{n}^{x} S_{n+1}^{y} - S_{n}^{y} S_{n+1}^{x}$

• Conclusion:

Flux make the system stiffer

Transverse XX model with energy and magnetization flux

PRE 57, 5187 (1998)

$$\hat{H}_{xx} = -\sum_{j=1}^{N-1} (S_n^x S_{n+1}^x + S_n^y S_{n+1}^y) - h \sum_{n=1}^N S_n^z$$

Free fermion picture still works

Ĥ

Evolution from natural initial states

Questions: Are there steady states in the $t \to \infty$ limit? Can they be described by the $\langle \hat{H}_{xx} \rangle = \min \ ; \ \langle \hat{J}_M \rangle = J_M$ approach?

• J_M states are OK.

Problems in case of energy flux:

Y.Ogata, PRE **66**, 016135 (2002)

Scaling structure of the front

V. Hunyadi, Z.R., L. Sasvári, cond-mat/0312250

Quantized transport?

Macro-control of the number of steps

Practically identical profiles

 m_0 determines the number of steps arriving at time t.

$$N(t,m_0) \approx \frac{\pi^2}{3} m_0^3 t$$

Bit manipulations in spin chains?

Problems: Finite T Nonintegrability effects Impurity effects