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    IntroductionIntroduction

   (1) Why is there something instead of nothing?

       Homogeneous vs. inhomogeneous systems
              Deterministic vs. probabilistic description
              Instabilities and symmetry breakings in homogeneous systems

    (2) Can we hope to describe the myriads of patterns?

           Notion of universality near a critical instability.
              Common features of emerging patterns.
                     Example: Benard instability and visual hallucinations.
              Notion of effective long-range interactions far from equilibrium.
              Scale-invariant structures.

    (3) Should we use macroscopic or microscopic equations?

            Relevant and irrelevant fields -- effects of noise.
                    Arguments for the macroscopic.
                      Example: Snowflakes and their growth.
              Remanence of the microscopic: Anisotropy and singular perturbations.
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Patterns from stability analysis

(1) Local and global approaches.

                       Problem of relative stability in far from equilibrium systems.

(2) Linear stability analysis.

                       Stationary (fixed) points of differential equations.
                               Behavior of solutions near fixed points: stability matrix and eigenvalues.
                                                 Example: Two dimensional phase space structures
                                                                   Lotka-Volterra equations, story of tuberculosis
                               Breaking of time-translational symmetry: hard-mode instabilities
                                                 Example:  Hopf bifurcation: Van der Pole oscillator
                               Soft-mode instabilities: Emergence of spatial structures
                                                 Example: Chemical reactions - Brusselator.

(3) Critical slowing down and amplitude equations for the slow modes.

                        Landau-Ginzburg equation with real coefficients.
                                Symmetry considerations and linear combination of slow modes.
                                Boundary conditions - pattern selection by ramp.

(4) Weakly nonlinear analysis of the dynamics of patterns.

                         Secondary instabilities of spatial structures.
                                 Eckhaus and zig-zag instability, time dependent structures.

(5) Complex Landau-Ginzburg equation
                         Convective and absolute instabilities of patterns.
                                 Benjamin-Feir instability - spatio-temporal chaos.
                                 One-dimensional coherent structures,  noise sustained structures.



PatternsPatterns fromfrom moving frontsmoving fronts

(1) Importance of moving fronts: Patterns are manufactured in them.

                         Examples: Crystal growth, DLA, reaction fronts.
                         Dynamics of interfaces separating phases of different stability.
                         Classification of fronts: pushed and pulled.

(2) Invasion of an unstable state.

                         Velocity selection.
                                   Example: Population dynamics.
                         Stationary point analysis of the Fisher-Kolmogorov equation.
                         Wavelength selection.
                                   Example: Cahn-Hilliard equation and coarsening waves.

(3) Diffusive fronts.
                          Liesegang phenomena (precipitation patterns in the wake of diffusive
                          reaction fronts - a problem of distinguishing the general and particular).
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   Why is there Something instead of Nothing?  (Leibniz)

 

Homogeneous (amorphous) vs. inhomogeneous (structured)

Actors
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Deterministic vs. probabilistic aspects

Bishop to Newton:

  Now that you discovered the laws
governing the motion of the planets,
can you also explain the regularity of
their distances from the Sun?

  Newton to Bishop:

  I have nothing to do with this problem. 
 The initial conditions were set by God.

The question of the origins of order:

Titius-Bode law(Cornell Universty)

?

Equilibrium is independent
of initial conditions
(at given constraints)                Stability

Thermo: : 
S=max 



Instabilities and Symmetry Breakings

Basic approach:        Understand more complex through studies of
                                 (symmetry breaking) instabilities of less complex

(Elmer Co.)

 Rayleigh-Bénard:
temperature field

velocity field

M.Schatz (shadowgraph images of convection patterns):



The  wonderful  world  of  stripes

Clouds

Precipitation patterns
in gels

CuCl2 +NaOH

CuO + ...

P. Hantz

NASA

Sand dunes

Characteristic length: 
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      VisualVisual Hallucinations and the  Hallucinations and the BBénardnard Instability Instability
BBénardnard  experiments (G. Ahlers et al.)experiments (G. Ahlers et al.) Visual hallucinations (H. Kluver)Visual hallucinations (H. Kluver)

(lattice, network, grating honeycomb)

Caleidoscope

tunnel funnel spiral

cobweb



Visual hallucinations:   retina          visual cortex mapping
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Scale Invariant Structures

MgO2 in Limestone                          C.-H. Lam

DLA (diffusion limited aggregation)

Oak tree

1 million particles N=100 million

DNR /1≈

(H. Kaufman)



Level of description: Microscopic or macroscopic?

(1)  No two snowflakes are alike

(2)  All six branches are alike

Parameters determining growth fluctuate
on lengthscales larger than 1mm.

(3) Sixfold symmetry

Microscopic structure is relevant
on macroscopic scale.

(4)  Twelvefold symmetry (not very often)

Initial conditions may be remembered.



Fluctuations and Noise

disorder                                      instability                                       order

Rayleigh-Benard near but below the convection instability:

G. Ahlers et al.G. Ahlers et al.

Power spectrum
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Emergence of spatial structures: Soft mode instabilities
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Stability analysis:
(1) Stationary homogeneous solutions:

Stab



Emergence of structures: Stability analysis
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Critical slowing down and classification of instabilities
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Classification of instabilities - emerging structures
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Stationary structures emerging in d=2 homogeneous systems
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Beyond the instability: Amplitude equation for slow modes
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Variation of the amplitude of the periodic structure 

on lenghtscale                         and on timescale               .    

Amplitude equation: Characteristic lengths and times
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Amplitude equation
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Complex Landau-Ginzburg equation
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CLGE - Phase diagram AAic
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Fronts separating stable and unstable phases

crystallization fronts
chemical reaction fronts

The problems:

stable unstable

(1) What is the speed of the front?

(2) Is there any nontrivial structure
      in the wake of the front?
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