Pattern Formation

Zoltán Rácz

Institute for Theoretical Physics Eötvös University E-mail: racz@poe.elte.hu Homepage:poe.elte.hu/~racz

Introduction

(1) Why is there something instead of nothing?

Homogeneous vs. inhomogeneous systems Deterministic vs. probabilistic description Instabilities and symmetry breakings in homogeneous systems

(2) Can we hope to describe the myriads of patterns?

Notion of universality near a critical instability. Common features of emerging patterns. Example: Benard instability and visual hallucinations. Notion of effective long-range interactions far from equilibrium. Scale-invariant structures.

(3) Should we use macroscopic or microscopic equations?

Relevant and irrelevant fields -- effects of noise.

Arguments for the macroscopic.

Example: Snowflakes and their growth.

Remanence of the microscopic: Anisotropy and singular perturbations.

Patterns from stability analysis

(1) Local and global approaches.

Problem of relative stability in far from equilibrium systems.

(2) Linear stability analysis.

Stationary (fixed) points of differential equations. Behavior of solutions near fixed points: stability matrix and eigenvalues. Example: Two dimensional phase space structures Lotka-Volterra equations, story of tuberculosis Breaking of time-translational symmetry: hard-mode instabilities Example: Hopf bifurcation: Van der Pole oscillator Soft-mode instabilities: Emergence of spatial structures Example: Chemical reactions - Brusselator.

(3) Critical slowing down and amplitude equations for the slow modes.

Landau-Ginzburg equation with real coefficients. Symmetry considerations and linear combination of slow modes. Boundary conditions - pattern selection by ramp.

(4) Weakly nonlinear analysis of the dynamics of patterns.

Secondary instabilities of spatial structures. Eckhaus and zig-zag instability, time dependent structures.

(5) Complex Landau-Ginzburg equation

Convective and absolute instabilities of patterns. Benjamin-Feir instability - spatio-temporal chaos. One-dimensional coherent structures, noise sustained structures.

Patterns from moving fronts

(1) Importance of moving fronts: Patterns are manufactured in them.

Examples: Crystal growth, DLA, reaction fronts. Dynamics of interfaces separating phases of different stability. Classification of fronts: pushed and pulled.

(2) Invasion of an unstable state.

Velocity selection. Example: Population dynamics. Stationary point analysis of the Fisher-Kolmogorov equation. Wavelength selection. Example: Cahn-Hilliard equation and coarsening waves.

(3) Diffusive fronts.

Liesegang phenomena (precipitation patterns in the wake of diffusive reaction fronts - a problem of distinguishing the general and particular).

Literature

M. C. Cross and P. C. Hohenberg,	Pattern Formation Outside of Equilibrium,
	Rev. Mod. Phys. 65, 851 (1993).

J. D. Murray, Mathematical Biology, (Springer, 1993; ISBN-0387-57204).

Why is there Something instead of Nothing? (Leibniz)

Homogeneous (amorphous) vs. inhomogeneous (structured)

Actors and spectators (N. Bohr)

Deterministic vs. probabilistic aspects

The question of the origins of order:

(Cornell University)

Bishop to Newton:

Now that you discovered the laws governing the motion of the planets, can you also explain the regularity of their distances from the Sun?

Newton to Bishop:

I have nothing to do with this problem. The initial conditions were set by God.

Thermo: S=max

Equilibrium is independent of initial conditions (at given constraints)

Stability

Instabilities and Symmetry Breakings

Basic approach: Understand more complex through studies of (symmetry breaking) instabilities of less complex

The wonderful world of stripes

Clouds

Characteristic length: $\sim 10^2 \, m$

The massive white dunes of Sand Mountain, southeast of Fallon, Nevada, This is one of the few "booming dunes"

Precipitation patterns in gels

CuCl₂+NaOH \rightarrow <u>CuO</u> + ... ~10⁻⁴m

Sand dunes

 $\sim 10^{-1} - 10^4 m$

Visual Hallucinations and the Bénard Instability

Bénard experiments (G. Ahlers et al.)

Visual hallucinations (H. Kluver)

Caleidoscope

(lattice, network, grating honeycomb)

tunnel

funnel

spiral

Scale Invariant Structures

Oak tree

MgO₂ in Limestone

C.-H. Lam

DLA (diffusion limited aggregation)

1 million particles

 $R \approx N^{1/D}$

N=100 million (H. Kaufman)

Level of description: Microscopic or macroscopic?

(2) All six branches are alike

Parameters determining growth fluctuate on lengthscales larger than 1*mm*.

(3) Sixfold symmetry

Microscopic structure is relevant on macroscopic scale.

(4) Twelvefold symmetry (not very often)

Initial conditions may be remembered.

Fluctuations and Noise

disorder homogeneous

instability large fluctuations

order

Rayleigh-Benard near but below the convection instability:

Power spectrum

G. Ahlers et al.

 $S(k) \sim \langle | \rho_k |^2 \rangle$

 $\rho_k = \frac{1}{V} \sum e^{ikx} \rho(x)$ x

Emergence of spatial structures: Soft mode instabilities

$$n \to n(t) \to n(x,t)$$
 $\dot{n} = f(n, \partial_x n, \partial_x^2 n, ..., \lambda)$

Spatial mixing: convection, <u>diffusion</u>, ... \longrightarrow Reaction-diffusion systems

$$\dot{n}_{1} = D_{1}\Delta n_{1} + f_{1}(n_{1}, n_{2}, \lambda)$$

$$\dot{n}_{2} = D_{2}\Delta n_{2} + f_{2}(n_{1}, n_{2}, \lambda)$$

Chemical reactions in gels (model example: Brussellator)

Stab

Stability analysis:

(1) Stationary homogeneous solutions:

 $f_1(n_1^*, n_2^*, \lambda) = 0$ $f_2(n_1^*, n_2^*, \lambda) = 0$

Emergence of structures: Stability analysis

Critical slowing down and classification of instabilities

$$\begin{split} \omega_{\lambda 1,2}(k) \Rightarrow \omega_{\lambda}(k) & \text{Instability:} \quad \mathbb{R}e\omega_{\lambda}(k) \to 0^{-} \\ \text{- with the largest real part} & \lambda \to \lambda_{c} \\ \mathbb{R}e\omega_{\lambda}(k) & & \mathbb{P}ossibilities: \\ \lambda_{c} & & \lambda_{c} \\ \lambda_{c} & & \lambda_{c} \\ & & \lambda_{c} \\ & & \lambda_{c} \\ & & \lambda_{c} \\ & & & \lambda_{c} \\ & & & \mathbb{I}m\omega_{\lambda_{c}}(k_{c}) \begin{cases} = 0 \\ \neq 0 \\ \neq 0 \\ & & \text{hard} \end{cases} \end{split}$$

Classification of instabilities - emerging structures

stationary

time- and spacedependent

t

Stationary structures emerging in d=2 homogeneous systems

Beyond the instability: Amplitude equation for slow modes

 $\lambda > \lambda_c$ Band of unstable modes What is the steady state?

 $\operatorname{Re}_{\lambda}(k)$ smooth function of

$$\omega_{\lambda}(k) \approx \lambda - \lambda_{c} - a(k - k_{c})^{2}$$

$$\sum_{\text{control parameter from now on}}$$

Amplitude equation: Characteristic lengths and times

on lenghtscale $\xi \sim 1/\sqrt{\epsilon}$ and on timescale $\tau \sim 1/\epsilon$.

Amplitude equation

> 0 Band of unstable modes
$$\omega_{\lambda}(k) \approx \varepsilon - a(k - k_c)^2$$

$$\xi \sim 1/\sqrt{\epsilon} \quad \tau \sim 1/\epsilon$$

$$n(x,t) - n^* \approx e^{ik_c x} \sqrt{\varepsilon} A_0(\sqrt{\varepsilon} x, \varepsilon t) \equiv e^{ik_c x} A(x, t)$$

- Plug it in the original equation and expand.

Amplitude equation:

$$\frac{\partial A}{\partial t} = \varepsilon A + \frac{\partial^2 A}{\partial x^2} - \left|A\right|^2 A$$

H. Chate'

CLGE - Phase diagram

$$\frac{\partial A}{\partial t} = \varepsilon A + (1 + ic_1) \frac{\partial^2 A}{\partial x^2} - (1 - ic_3) |A|^2 A$$

Fronts separating stable and unstable phases

crystallization fronts chemical reaction fronts

The problems:

(1) What is the speed of the front?

(2) Is there any nontrivial structure in the wake of the front?