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GOAL OF THE LECTURE(S)

We return to the stochastic differential equations
(Langevin’s equation) discussed earlier in connection
with the Brownian motion. The problem is generalized to
the dynamics of a particle in a potential in the presence of
thermal fluctuations. The aim will be to find and explain
what kind of noise should be added to the deterministic
(mechanical) equation in order that the system would
relax to equilibrium at a given temperature. We shall
also show (though not quite precisely) that the resulting
stochastic differential equation is equivalent to a proba-
bilistic description through the Fokker-Planck equation.

PRELIMINARIES

Brownian motion in the overdamped limit

The Brownian motion was described earlier in terms
of Langevin’s equation

mẍ = −6πη̃a ẋ+X (1)

where x, m and a are the position, mass and radius of
the particle, respectively, η̃ is the viscosity of the medium,
and X is the random force resulting from thermal fluc-
tuations.

Langevin’s solution of (1) did not require much knowl-
edge about X. Randomness meant that 〈X〉 = 0, and
it followed from the stationarity of the process that
〈xX〉 = 0. It is also remarkable that the fact the particle
moves in a medium of temperature T entered the cal-
culation only through the rewriting the left-hand side of
(1) as mẍ = mẍ2/2−mẋ2 and replacing 〈mẋ2〉 by kBT
(the average kinetic energy is given by the equipartition
theorem).

Examining the derivation in more detail, one can also
see that the mẍ2/2 plays a role only in determining the
relaxation to the long-time asymptote 〈x2〉 = 2Dt, thus
the same asymptotics is obtained if this inertial term is
neglected. Then the following question arises: Can we
neglect the inertial term and consider the overdamped
(túlcsillaṕıtott) motion of the particle

0 = −6πη̃a ẋ+X (2)

and obtain the same 〈x2〉 = 2Dt result? What do we
have to assume in this case about the noise to imitate
the fluctuations of a T -temperature heat bath?

Motion in a potential

We shall address the above questions in a slightly more
general setup. Let us imagine that the particle is at-
tached to the origin (x = 0) by a spring, i.e. it is moving
in a potential U(x) = kx2/2. Then, equation (1) would
have a term −dU/dx = −kx on the right hand side, and
the overdamped version of the equation of motion would
have the following form

0 = −6πη̃a ẋ− kx+X . (3)

In this case, one may ask a more difficult question about
the noise: What should be the properties of X which en-
sure that the system relaxes to the thermal equilibrium,
i.e. that the long-time limit of the probability that the
particle is at x is given by the Boltzmann distribution

P e(x) = e−kx
2/2kBT /Z (4)

where Z is the normalizing factor (partition function)

Z =

∞∫
−∞

dx e−kx
2/2kBT . (5)

Actually, the same question can be asked for a motion
in a general potential U(x) with the equation of motion
and the equilibrium distribution being

0 = −6πη̃a ẋ− dU

dx
+X (6)

and

P e(x) = e−U(x)/kBT /Z , Z =

∞∫
−∞

dx e−U(x)/kBT . (7)

FORMULATION OF THE PROBLEM

Equation (6) can be written in the form

ẋ(t) = −µdU
dx

+ η(t). (8)

where

µ =
1

6πη̃a
, η(t) = µX(t) . (9)

The question is whether there are simple and practical
realizations of η(t) which brings the system to equilib-
rium

P e(x) = e−U(x)/kBT /Z . (10)
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BROWNIAN MOTION LIMIT

The equation of motion in this case (U = 0) is inte-
grated easily

ẋ = η → x(t) =

t∫
0

η(τ)dτ . (11)

It follows then that we can calculate the averages

〈x〉 =

t∫
0

〈η(τ)〉dτ , (12)

〈x2〉 =

t∫
0

t∫
0

dτdτ ′〈η(τ)η(τ ′)〉 . (13)

In order to obtain the known results for the Brownian
motion, it is sufficient to assume that (1) the average of
the random noise is zero and (2) the noise is independent
at distinct time moments

〈η(t)〉 = 0 , 〈η(t)η(t′)〉 = 2Dδ(t− t′) (14)

where δ(t) is the usual delta-function and D is the am-
plitude of the noise.

Indeed, using (14), one can see that equation (12) gives

〈x〉 = 0 (15)

while equation (13) yields

〈x2〉 = 2Dt . (16)

Note that the diffusion coefficient D is not determined
in this description. So, it looks as if we would have lost
something compared to the original Langevin descrip-
tion. This is not so, as will be demonstrated below for
the case of oscillator in a heat bath [U(x) = kx2/2]. The
ammplitude of the noise has a well defined value in agree-
ment with the Langevin description.

LINEAR OSCILLATOR IN A HEATH BATH

The equation of motion is simple for the linear oscilla-
tor

ẋ = −µkx+ η(t) , (17)

and the solution can be written (you can verify it by
substitution) as

x(t) = x(0)e−µkt +

t∫
0

e−µk(t−τ)η(τ)dτ , (18)

where x(0) is the initial (t = 0) value of x. Since
〈η(t)〉 = 0, it follows from the above equation that, as
expected, the average position of the particle relaxes to
the mechanical equilibrium position

〈x(t)〉 = x(0)e−µkt +

t∫
0

e−µk(t−τ)〈η(τ)〉dτ

= x(0)e−µkt → 0 . (19)

Next we calculate the mean-square fluctuations 〈x2(t)〉.
If the system relaxes to equilibrium, the long-time limit of
〈x2(t→∞)〉 = 〈x2〉e should be given by the equilibrium
distribution

〈x2〉e =
1

Z

∞∫
−∞

dxx2 e−kx
2/2kBT = kBT/k . (20)

When calculating 〈x2(t)〉, one should square both sides
of equation (18) and average the result over the noise.
On the right-hand side, the cross terms are linear in η so
their average gives zero and only the following two terms
remain

〈x2(t)〉 = x2(0)e−2µkt +
t∫

0

t∫
0

dτdτ ′e−µk[(t−τ)+(t−τ ′)]〈η(τ)η(τ ′)〉

= x2(0)e−2µkt + 2D

t∫
0

dτe−2µk(t−τ) . (21)

Using the delta correlation of the noise (14), the double
integral on the right-hand side becomes a single integral
which can be easily calculated and we obtain

〈x2(t)〉 = x2(0)e−2µkt +
D

µk

(
1− e−2µkt

)
. (22)

We can see now that, in the large-time limit, the above
expression converges to

〈x2(t→∞)〉 =
D

µk
. (23)

Since this limit should be equal to the equilibrium limit,
we can compare the above result to (20) and obtain an
equation relating the amplitude of the noise (D) and the
temperature

〈x2(t→∞)〉 = 〈x2〉eq =
D

µk
=
kBT

k
. (24)

From the above equality it follows that the amplitude of
the noise (which is the diffusion coefficient in the Brow-
nian motion)

D = µkBT =
kBT

6πη̃a
(25)
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is given by the same expression as in the original
Langevin theory.

So far we have used only limited features of the noise
given in (14) and obtained agreement with the Brownian
motion results and with some of the known results for
the linear oscillator. It remained a question whether any
noise satisfying (14) would produce for example the full
equilibrium distribution P e(x). We shall show below that
if we add the feature of ”gaussianity” to the noise then
P e(x) ∼ exp [−U(x)/kBT ] emerges as the long-time limit
of the distribution for any potential U(x).

GAUSSIAN NOISE AND STOCHASTIC
DIFFERENTIAL EQUATIONS

In order to understand the stochastic differential equa-
tions, we have to imagine that we are trying to solve them
on a computer. This means that we have to discretize
the equations. In the simplest discretization scheme, we
obtain the value of x at time t + ε from the following
iteration

x(t+ ε) = x(t)− µdU
dx

ε+ ηε(t) , (26)

where the deterministic part of x’s increment −µdU/dx ε
is understandable and is given. The task is to understand
what to write for the stochastic part, ηε(t).

As before, one assumes that 〈ηε(t)〉 = 0 and, further-
more, the values of ηε(t) at different t-s are assumed to be
independent of each other. The amplitude of the noise is
expected to be proportional to D but due to discretiza-
tion, the proportionality constant is not quite obvious.
We can, however, determine the amplitude by consid-
ering again the case without external potential, which
should be the just the discretized version of the Brown-
ian motion

x(t+ ε) = x(t) + ηε(t) . (27)

After n steps when the elapsed time is equal to nε, the
position of the particle given by

x(t+nε) = x(t)+ηε(t)+ηε(t+ε)+ ...+ηε(t+(n−1)ε) .
(28)

Thus the average of the mean square displacement of the
particle is found to be

〈[x(t+ nε)− x(t)]2〉 =

〈[ηε(t) + ηε(t+ ε) + ...+ ηε(t+ (n− 1)ε)]2〉 =

〈η2ε(t)〉+ 〈η2ε(t+ ε)〉+ ...+ 〈η2ε(t+ (n− 1)ε)〉 =

〈η2ε〉n . (29)

Since the elapsed time is nε, the mean square displace-
ment of the Brownian motion should be

〈[x(t+ nε)− x(t)]2〉 = 2Dnε . (30)

Thus the comparison of (30) and (29) gives us the am-
plitude of the discretized noise

〈η2ε〉 = 2Dε . (31)

It is important to observe here that the magnitude of
ηε is

√
ε. And this is what should be compared with

the increment coming from the deterministic part in (26)
which is proportional to ε.

As we shall see below, if we assume that the noise (of
average zero and of amplitude 2Dε) is Gaussian, then we
can prove that this noise drives the system to equilibrium
at temperature T , and the time-evolution of probabil-
ity distribution satisfies the appropriate Fokker-Planck
equation.

The assumption of gaussianity means that the stochas-
tic increment ηε in the iteration (26) is drawn, indepen-
dently in every step, from the probability distribution

PG(ηε) =
1√

4πDε
e−η

2
ε/4Dε . (32)

FIG. 1: Random, ηε, and deterministic, −µ(dU/dx)ε, com-
ponents of the coordinate increment.

We emphasize again that the magnitude of the stochas-
tic increment is proportional to

√
ε while the determin-

istic part of the increment is −µdU/dx ε ∼ ε as shown
in Fig.1. This means that the practical discretization is
not entirely trivial. For small ε, the noise is dominant
and one needs large number of steps for the determinis-
tic part to play a role. For large ε, on the other hand,
the deterministic part is dominating and it takes again a
large number of steps for the noise to be felt and for the
equilibrium distribution to emerge.

DERIVATION OF THE FOKKER-PLANCK
EQUATION

(The details of this section are not required at the
exam).
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In order to see how the Gaussian noise discussed above
drives the system to equilibrium, we need to write down
the time evolution of the probability distribution P (x, t)
defined as the probability of the particle being at x at
time t. Then one should look at the t → ∞ limit of
P (x, t) and a stationary thermal distribution at temper-
ature T should be observed. We shall carry out the
above program only for the case of quadratic potential
U(x) = kx2/2 but the same calculation with slightly in-
creased difficulties in technicalities goes through for the
general potential U(x) as well.

The discretized Langevin equation given by equation
(26) with−µdU/dx = −µkx ≡ −λx (to simplify notation
we introduce here λ ≡ µk)

x(t+ ε) = x(t)− λx(t)ε+ ηε(t) . (33)

The path of the particle generated by the iteration is
not deterministic due to the noise ηε(t) term. The equa-
tion governing the probability P (x, t) can be derived us-
ing the Chapman-Kolmogorov equation which we shall
also write in a time-discretized form

P (x, t+ ε) =

∞∫
−∞

W (x, y; ε)P (y, t)dy (34)

where W (x, y; ε) is the probability that particle moves to
x by the time t + ε provided it started at y at time t.
In order that the iteration (33) would move the particle
from y to x in time ε, the noise term should have just the
right value satisfying the equation (33) with x(t+ ε) ≡ x
and x(t) ≡ y:

x = y − λyε+ ηε(t) . (35)

The probability of the above ηε(t) is given by (32) with
ηε(t) replaced by the solution of (35). Thus W (x, y; ε) is
obtained as

W (x, y; ε) = PG(ηε = x− y + λyε)

=
1√

4πDε
e−[x−y+λyε]

2/4Dε . (36)

Substituting the above W (x, y; ε) into equation (34) and
expanding the left-hand side of the equation to first order
in ε, one finds

P (x, t) + ∂tP (x, t)ε =

∞∫
−∞

e−[x−y+λyε]
2/4Dε

√
4πDε

P (y, t)dy .

(37)
We should now expand the integral on the right-hand side
to order ε, as well. To do this, let’s make the following
change in the integration variable

z = y(1− λε)− x , (38)

resulting in

P (x, t) +
∂P (x, t)

∂t
ε

=
1

1− λε

∞∫
−∞

e−z
2/4Dε

√
4πDε

P

[
z + x

1− λε
, t

]
dz . (39)

The expansion to order ε is somewhat tedious. As a first
step, we replace 1/(1− λε) by 1 + λε which is correct to
order ε

P (x, t) +
∂P (x, t)

∂t
ε

=

∞∫
−∞

e−z
2/4Dε

√
4πDε

P [z(1 + λε) + x(1 + λε), t] dz

+ λε

∞∫
−∞

e−z
2/4Dε

√
4πDε

P [z + x, t] dz , (40)

where we set in P [z(1 + λε = 0) + x(1 + λε = 0), t] in
the last integral since ε is multiplying this integral. We
should also set ε → 0 in the Gaussian which we know
yields a delta function δ(z) and, consequently, this last
term simplifies to λεP (x, t), and we have

P (x, t) +
∂P (x, t)

∂t
ε

=

∞∫
−∞

e−z
2/4Dε

√
4πDε

P [z(1 + λε) + x(1 + λε), t] dz

+λεP (x, t) . (41)

Now, the tricky part of the derivation is to expand
P [z(1 + λε) + x(1 + λε)] around z = 0. The Gaussian
becomes a delta function δ(z) in the limit of ε → 0 and
only the z ≈ 0 range is relevant in P . Then the terms up
to order ε must be collected.

The term coming from setting z = 0 in
P [z(1 + λε) + x(1 + λε)] yields P [x(1 + λε), t] once it is
recognized that the remaining integral of the Gaussian
just gives 1. To order ε, this term can be written as

P (x, t) + ελx
∂P

∂x
. (42)

The next term is zero

∂P

∂z

∣∣∣∣
z=0

∞∫
−∞

e−z
2/4Dε

√
4πDε

z(1 + λε)dz = 0 , (43)

since the integrand is an odd function of z.
The 3rd term of the expansion is given by

1

2

∂2P

∂z2

∣∣∣∣
z=0

∞∫
−∞

e−z
2/4Dε

√
4πDε

z2(1 + λε)2dz . (44)
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The above integral is proportional to ε, and is given by
2Dε. In addition, one should note that the argument of
P is z(1 + λε) + x(1 + λε), thus

∂2P

∂z2

∣∣∣∣
z=0

=
∂2P

∂x2

∣∣∣∣
z=0

, (45)

and, furthermore, the ∂2P/∂x2 is multiplied by 2Dε
thus, to order ε, its argument x(1 + λε) can be replaced
by x. Thus the 3rd term of the expansion is reduced to

εD
∂2P

∂x2
, (46)

All the higher order terms in the expansion by z yield
terms proportional higher then first power of ε (try to
show it!). Collecting now the order ε terms (42) and
(46), and substituting them into equation (41) yields, at
the end, the following Fokker-Planck equation

∂P (x, t)

∂t
=
∂λxP (x, t)

∂x
+D

∂2P (x, t)

∂x2
, (47)

Had we carried out the calculation for a general U(x)
then the λx = µkx = µ∂U/∂x part in the first term on
the right hand side would also be µ∂U(x)/∂x, and then
the general equation would be

∂P (x, t)

∂t
= µ

∂

∂x

(
∂U

∂x
P (x, t)

)
+D

∂2P (x, t)

∂x2
. (48)

The stationary solution of the above equation can be ob-
tained by setting ∂P (x, t)/∂t to zero

0 = µ
d

dx

(
dU

dx
P (e)(x)

)
+D

d2P (e)(x)

dx2
. (49)

The derivation of P (e)(x) from the above equation is
straightforward but uses an argument that no probabil-
ity current can be present in equilibrium. Instead of the
derivation, I just suggest to verify by substitution that
the above equation is solved by the function

P (e)(x) = Ce−µU(x)/D (50)

where C is a normalization constant. If we remember
now that D and µ are not independent of each other
but, according to (25), they are related by D = µkBT ,
the final result for the stationary distribution function is
obtained as the equilibrium Boltzmann distribution

P (e)(x) =
1

Z
e−U(x)/kBT . (51)

Even if we did not prove everything in full generality,
we have seen (1) how a stochastic differential equation
with a special type of additive noise yields relaxation to
equilibrium, (2) how the noise can be handled and put
on the computer.


