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[1] Glacial-interglacial events have several nonlinear and stochastic characteristics.
Recent studies suggested additional stochastic nonlinear features (not necessarily related
to the large-scale dynamics of the glacial cycle) in the timescale of 1–100 kyr including
(1) strong long-range correlations in the magnitude of climate variable increments as well
as (2) a wide multifractal spectrum. Realistic climate models should reproduce these
properties of the natural system. We first study several previously proposed stochastic
models for glacial-interglacial dynamics and demonstrate that they do not reproduce some
of the nonlinear properties of the paleoclimate proxy data. We then suggest two nonlinear
stochastic models for glacial-interglacial dynamics that exhibit similar stochastic nonlinear
properties to those seen in the natural data. We conjecture that interaction between fast
random fluctuations (representing atmospheric variability) and slowly varying fluctuations
(representing oceanic variability) may underlie the observed stochastic nonlinearity of
time series for glacial-interglacial oscillations.
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1. Introduction

[2] Climate variables, such as ice volume, temperature,
and sea level, changed drastically in the last 800,000 years
(800 kyr). These changes are due to successive glacial-
interglacial events, each lasting approximately 100 kyr.
Each glacial-interglacial oscillation consists of long glacia-
tion periods (�90 kyr) followed by rapid deglaciation
periods (�10 kyr). Milankovitch [1941] suggested that
glacial dynamics may be related to Northern Hemisphere
high latitude summer insolation; relatively cold high latitude
summers will leave some snow unmelted, enabling ice
growth. In addition, the following winter is relatively warm,
and will have more precipitation since warmer conditions
result in more precipitation. Insolation variations are attrib-
uted to changes in the eccentricity of the Earth’s orbit
around the Sun, to changes in the obliquity of the Earth’s
axis of rotation, and to changes in the precession of the
Earth’s orbit. These orbital parameters have timescales of
�100 kyr, �40 kyr, and �20 kyr, respectively. Although
the Milankovitch theory is widely accepted, almost
all researchers agree that the eccentricity forcing with a
100-kyr periodicity appears far too small to explain the

strong 100-kyr glacial-interglacial oscillations [Imbrie et al.,
1993].
[3] In the last 30 years or so, scientists debated the origin

of the 100-kyr timescale of the glacial-interglacial oscilla-
tions [e.g., Kominz and Pisias, 1979; Saltzman, 1990;
Imbrie et al., 1992, 1993; Hagelberg et al., 1991]. Some
maintained that the ‘‘Milankovitch forcing’’ is the main
driving mechanism of the glacial-interglacial oscillations;
the strong 100-kyr cycle is the result of nonlinear rectifica-
tion of the weak eccentricity (modulated by precession)
variability [e.g., Berger and Loutre, 1996; Paillard, 1998].
Others suggested that the internal dynamics of the Earth
climate system underlies the 100-kyr oscillations; these
internal oscillations are modulated by, and phase-locked
to, Milankovitch forcing [e.g., Saltzman and Sutera,
1987; Gildor and Tziperman, 2000]. Others suggested that
Milankovitch forcing has only a minor effect on glacial-
interglacial oscillation dynamics and that glacial-interglacial
oscillations are the result of a stochastic mechanism
[Kominz and Pisias, 1979; Pelletier, 1997; Wunsch,
2003; Ashkenazy et al., 2003a]. It is clear however, that
whatever the role of Milankovitch forcing is, the domi-
nant Milankovitch frequencies due to precession and
obliquity explain only a relatively small portion of the
variance of the proxy records while the remaining portion
of the records is approximated as red noise [e.g., Kominz
and Pisias, 1979; Wunsch, 2003]. By red noise, we mean
that the power spectrum of the noise decays as a power
law. In this paper we follow the last hypothesis and
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assume that glacial-interglacial oscillations are mainly due
to internal and stochastic variability of the climate system
without external insolation forcing.
[4] Different types of stochastic processes are character-

ized by different power spectra. The most trivial example is
that of the ‘‘white noise’’; the power spectrum of a Gaussian
random variable is flat, indicating that the relative weight of
the different frequencies is equal, similar to white color that
is built from ‘‘all’’ colors. In a red noise spectrum the low
frequencies dominate the signal; the term ‘‘red’’ is associ-
ated with the color red, which has a low frequency. An
example of a red-noise process is a random-walk process,
i.e., a process that accumulates random white noise. In that
case the resulting power spectra falls like 1/f b=2 where the
exponent b is the scaling exponent. In other cases the higher
frequencies of the signal prevail; for example, for ‘‘blue
noise’’ the power spectrum is more dominant for higher
frequencies. Here the term ‘‘blue’’ also reminds us that the
color blue has a high frequency. An example of ‘‘blue
noise’’ is a derivative of white noise that has a power
spectrum that is proportional to f 2; in this case the scaling
exponent is b = �2 (since P(f ) � 1/f b). Fractional Brownian
processes yield power spectra with different scaling expo-
nents b, indicating that a wide range of subprocesses with a
wide range of frequencies control the signal [e.g., Shlesinger,
1987]. It is the scaling exponent b which characterizes this
complex situation.
[5] The red noise spectrum of the climate record may

lead to the conclusion that the climate system is a simple
accumulator of white noise, since the sum (i.e., integral) of
white noise has a red-noise spectrum. Usually, red noise is
taken as evidence of stochastic behavior; however, some
deterministic models can also result in a red-noise spec-
trum, as shown for example by Ghil and Treut [1981].
However, recent studies indicated that glacial dynamics is
not a simple linear stochastic process (such as a red noise
process); in addition to their red-noise spectrum, the
paleoclimate proxy records are complex and stochastically
nonlinear [Lovejoy and Schertzer, 1986; Schmitt et al.,
1995; Ashkenazy et al., 2003a]. By nonlinearity, we not
only mean that the time series is, for example, asymmetric,
but that the time series cannot be modeled by autoregres-
sion linear models. This complexity and nonlinearity is
expressed by clustering of the magnitudes of increments of
the series under consideration; a large magnitude incre-
ment (of the temperature change in this study) is likely to
be followed by another large magnitude increment, and a
small magnitude increment is likely to be followed by a
small magnitude increment. In addition, the climate proxy
records have a broad multifractal spectrum; that is, differ-
ent moments follow different scaling laws (see Appendix A
and section 2). These stochastic nonlinearities point to a
specific type of mechanism that only certain types of
stochastic models can reproduce. The magnitude series
correlations and the wide multifractal spectrum of ice core
data may shed some light on rapid climate change. Our
results suggest that an episode of pronounced and rapid
climate change is likely to follow a similar event. More-
over, the multifractal nature of the ice core data points to
multiplicative climate processes. We note that this stochas-
tic nonlinearity is not necessarily linked to the large-scale
dynamics of the glacial cycles.

[6] Previous models addressed the red noise behavior of
the proxy records of glacial-interglacial oscillations. How-
ever, these models seem not to account for the nonlinear
stochastic features of the glacial-interglacial oscillations;
they mainly reproduce the linear properties of the glacial-
interglacial oscillations, i.e., the red-noise spectrum. Al-
though some models have nonlinear dynamics (as reflected
by the nonlinear formalism of the model), their stochastic
forcing is linear; we can demonstrate that these models do
not account for the nonlinear stochastic properties of the
proxy records. It is fair to say that the understanding of the
nonlinear stochastic nature of the glacial-interglacial oscil-
lation dynamics remains elusive.
[7] The main objective of the present study is to propose

possible conceptual mechanisms that may underlie the
stochastic nonlinear features of the glacial-interglacial proxy
records and can reproduce the nonlinear statistical properties
of the paleoclimate data. Obviously, this objective does not
result in the formation of a climate model, but instead serves
the purpose of identifying some of the features that climate
models must contain to successfully reproduce Earth’s
temperature history. A secondary objective is to reanalyze
some of the previously proposed stochastic models of
glacial-interglacial oscillations dynamics and verify whether
they account for the recently reported stochastic nonlinear
properties of long climate proxy records. There are many
models that fit paleoclimate data; however, these models
have completely different mechanisms (E. Tziperman, Lec-
ture notes for Woods Hole Geophysical Fluid Dynamics
summer school on conceptual models in climate dynamics,
Lecture 9: Mechanisms and toy models of the glacial cycles,
2001, available at http://www.deas.harvard.edu/climate/eli/
reprints/WH_GFD_PDFvol2001.html) (hereinafter referred
to as Tziperman lecture, 2001). Thus it is important to
develop new tools for testing existing various glacial models
and choose the more realistic ones. In this paper we suggest
using the stochastic nonlinearity of paleoclimate data as an
additional test for glacial models.
[8] There are several important points that we would like

to discuss before describing the details of the present study:
(1) The present study does not address the question of
whether climate is mainly stochastic or deterministic; this
question is discussed at length in the literature [e.g.,
Hasselmann, 1976; Kominz and Pisias, 1979; Wunsch,
2003, 2004], and we find it unnecessary to enter into this
debate in our paper, and follow their conclusion that the
climate system is at least partially stochastic. Our aim is to
discuss only stochastic models that reproduce features of the
climate system. (2) The red-noise spectrum of paleoclimate
records may be produced by a deterministic system. Thus a
red-noise spectrum by itself does not rule out a deterministic
mechanism, but instead suggests that a simple stochastic
mechanism may also be a plausible explanation for glacial
dynamics. However, the evidence for stochastic nonlinearity
of paleoclimate records (given by Lovejoy and Schertzer
[1986], Schmitt et al. [1995], and Ashkenazy et al. [2003a])
is unlikely to be produced by deterministic glacial models,
thus indicating the important role of stochastic processes in
glacial dynamics. (3) It is well known that many climate
models generate realistically looking glacial-interglacial
time series although their mechanisms are very different
[Roe and Allen, 1999] (see also Tziperman lecture, 2001).
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Thus agreement with paleoclimate data is insufficient to
validate climate models. We have found additional prop-
erties of ice-age dynamics in the climate data that ideally
should be reproduced by successful models, and below
we discuss some generic models which exhibit similar
properties.
[9] This study uses advanced statistical physics tech-

niques to analyze paleoclimate data. We refer the reader
who is interested in these techniques and terminology to
Shlesinger [1987], Peng et al. [1994], Bunde and Havlin
[1996], and Muzy et al. [1994], and to http://reylab.bidmc.
harvard.edu/download/DFA/intro/ as well as http://www.
physionet.org/tutorials/multifractal/. A nice introduction to
the nonlinearity of climate records was published by King
[1996] and Hagelberg et al. [1991]; note, however, that in
this paper we follow the approach of Schreiber and Schmitz
[2000], which also included a climate example in the their
study.
[10] The paper is organized as follows. We first briefly

review the evidence for the nonlinear stochastic nature of
the glacial-interglacial oscillation dynamics (section 2).
Then we analyze the nonlinear properties of a few stochastic
models for the glacial-interglacial oscillations (section 3),
demonstrating that they do not reproduce the stochastic
nonlinear properties of ice core data discussed in section 2.
Next we introduce two stochastic models of glacial dynam-
ics that reproduce the stochastic nonlinear properties of the
paleoclimate proxy records (section 4). We summarize and
discuss the stochastic models for glacial-interglacial oscil-
lations in section 5. The body of this contribution presents
the important results of our study; in Appendices A–C we
summarize the statistical methods used to obtain our results.

2. Climate Change: Periodic, Linearly Stochastic,
or Nonlinearly Stochastic?

[11] The study of the past few hundred thousand years of
climate history is primarily based on proxy records of deep
sea sediment cores and ice cores. Basically, heavy to light
isotope ratios (like d18O and dD) at different depths in the
cores reflect climate variables at different times. A crucial
point is the depth-age relation (dating). There are several
approaches used to tackle the issue of chronology: (1) As-
suming that Milankovitch forcing underlies glacial dynam-
ics, it is possible to orbitally tune the proxy records [Imbrie
et al., 1984]; the tuning is usually based on the obliquity
and precession parameters. (2) Build some model for
sedimentation rate (or snow accumulation) to find the
depth-age relation (e.g., the GT4 chronology of Petit et al.
[1999]. (3) Identify extreme climate events (like ice age
terminations) and then approximate their ages by assuming
constant sedimentation rate and find the average time of
these events [e.g., Raymo, 1997; Huybers and Wunsch,
2004]; the average times for these extreme events then
provide control points for the depth-age relation. In addi-
tion, control points such as the magnetic reversal about
780 kyr ago are additional age constraints [see also Webster
et al., 2004].
[12] Obviously, if the proxy records are orbitally tuned to

Milankovitch forcing, it is expected that the frequency
spectrum will contain the Milankovitch main periodicities.
This circular approach enhances the role of Milankovitch

forcing [Neeman, 1993; Huybers and Wunsch, 2004]. On
the other hand, the assumption concerning constant sedi-
mentation rate (or an ice flow model for ice cores) is too
simple to accurately determine the depth-age relation. In
addition, the third approach presented above usually pro-
duces large error bars for the timing of terminations such
that exact timing for the climatic events is not accurately
known. Therefore, unfortunately, an accurate frequency
spectrum of the climatic record is not yet available, and
thus it is more difficult to evaluate the role of Milankovitch
forcing on climate dynamics. Nonetheless, examining high-
resolution data that are not orbitally tuned is the most
suitable technique to study the role of Milankovitch forcing
on climate.
[13] In 1999, high-resolution ice core data from Vostok

(Antarctica) became available [Petit et al., 1999]. These ice
core data are longer than 3 km and extend back more than
420 kyr. Some of the proxies (e.g., dD) are sampled every
meter and thus result in more than 3000 data points
available for time series analysis. The depth-age relation
of the Vostok record (GT4) is based on an ice-flow model
and is minimally orbitally tuned. In Figure 1a we present the
Vostok dD record which is a proxy for local temperature
during ice deposition. The record shows the last four glacial
cycles with an average period of �100 kyr. We also show
the corresponding 65�N July insolation (Figure 1b) which,
according to Milankovitch theory, underlies glacial dynam-
ics. It is clear that there is no direct (linear) relation between
the two [Imbrie et al., 1993]. In Figure 2 we show the power
spectrum of the ice core data (Figure 1a) and that of July
65�N insolation (Figure 1b). The power spectrum of the ice
core data shows a pronounced peak at the 100-kyr time-
scale, with secondary magnitude decreasing peaks at 40-kyr,
28-kyr, 22-kyr, and 18-kyr timescales. On the other hand,
the power spectrum of the insolation data does not show the
most pronounced 100-kyr peak, and unlike the ice core data,

Figure 1. (a) Isotope temperature record from the Vostok
(Antarctica) ice core [Petit et al., 1999] versus time (in kyr);
the temperature T on the right axis is linearly dependent on
the hydrogen isotope ratio, dD, displayed on the left axis. The
series consists of�4 glacial cycles where the duration of each
cycle is �100 kyr: �90 kyr of gradual cooling (glaciation)
followed by �10 kyr of rapid warming (deglaciation).
(b) Summer (July) 65�N solar radiation as a function of age
[Berger and Loutre, 1991]. The July 65�N insolation is
dominated by the �20 kyr precession cycle.
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the 40-kyr peak is smaller than that of the 20-kyr peaks.
This dissimilarity led scientists to the conclusion that the
climate system does not respond linearly to changes in
insolation [e.g., Saltzman, 1990; Imbrie et al., 1992, 1993].
[14] In Figure 2 (bottom panels) we show the power

spectra on a log-log plot; in a log-log plot the x and y axes
are replaced by log x and log y, and thus a power law
function 1/f b appears linear on a log-log plot where the
slope of this line is the exponent b. In the case of the ice
core data, the power spectrum has a power law spectrum,
S( f ) � 1/f b, for frequencies larger than 1/(100 kyr) with
an exponent b = 2.15; this exponent is equivalent to
the detrended fluctuation analysis (DFA) exponent of a =
(b + 1)/2 � 1.6 (Appendix C). The periodicities which seem
to be significant on a linear plot look weak and insignificant
on a log-log plot [Kominz and Pisias, 1979; Wunsch, 2003].
A power spectrum that follows a power law is a possible
indication of a stochastic underlying process [Mandelbrot
and van Ness, 1968]. For example, a randomwalk (which is a
simple sum of white noise) has a red noise power spectrum
S(f )� 1/f 2, i.e., b = 2. Consequently, onemight conclude that
climate change, as reflected in the Vostok ice core data, is a
simple random-walk process where the increments are simple
linear white noise; however, previous studies demonstrated
that the ice core data are stochastically nonlinear and not a
simple random-walk process [Ashkenazy et al., 2003a].
[15] The power spectrum of the insolation data plotted

on a log-log plot (Figure 2b, bottom panel) does not
follow scaling laws while the peaks of obliquity and
precession are still present. The red-noise behavior of the
ice core data and the inconsistency with the insolation
data are what led other researchers [e.g., Kominz and
Pisias, 1979; Wunsch, 2003] and ourselves to the con-

clusion that the underlying glacial process may be mainly
stochastic while the relative changes in isolation (as
reflected by Milankovitch forcing) may be secondary
[Kominz and Pisias, 1979; Pelletier, 1997; Wunsch,
2003, 2004]. In this work we concentrate on the stochas-
tic properties of paleoclimate records and neglect the
contribution of the Milankovitch forcing.
[16] The power spectrum reflects the two-point correla-

tions of the time series under consideration; the information
that is stored in the Fourier phases is ignored. The Fourier
phases reflect information about the high-order statistics of
the series and are related to the nonlinearity of the time
series. Several studies analyzed the nonlinear properties of
paleoclimate time series including the asymmetry of the
time series [Hagelberg et al., 1994; Schreiber and Schmitz,
2000], the harmonics in the power spectrum [King, 1996],
modulations of the series [King, 1996], the phase relations
between different frequencies [Hagelberg et al., 1994; King,
1996], and the presence of combination tones in the power
spectrum [Ghil and Treut, 1981; Yiou et al., 1994].
[17] However, the term nonlinearity is defined in different

ways by different people. For example, some define non-
linearity according to the response of the system to external
perturbation: If the response is linear, then the system is
linear; otherwise the system is considered to be nonlinear.
Others would define a system to be nonlinear according to
its dynamical equations: If the system’s dynamical equa-
tions contain nonlinear terms, it is considered to be nonlin-
ear. Others refer to nonlinear dynamics when they want to
describe the complex behavior of systems such as chaotic
systems.
[18] In some sense, it is obvious that climate dynamics is

nonlinear due to the sawtooth pattern of glacial-interglacial

Figure 2. (a) The power spectrum of the Vostok ice core data shown in Figure 1a. (top) Linear plot.
(bottom) Log-log plot (double logarithmic plot). A double logarithmic plot is usually used to estimate the
exponent of a power law function. The estimated exponent is b � 2.15. The linear plot shows a dominant
�100 kyr cycle with secondary peaks of �40 kyr to �20 kyr cycles. On the other hand, the log-log plot
of the power spectrum shows a red-noise-like spectrum for frequencies 1 kyr�1 > f > 0.01 kyr�1 with a
crossover to white noise spectrum for lower frequencies (f < 0.01 kyr�1) suggesting that the glacial-
interglacial process is mainly stochastic. (b) Same as Figure 2a for the 65�N July insolation [Berger and
Loutre, 1991] shown in Figure 1b. Here, unlike the power spectrum of Vostok ice core data, the �20 kyr
precession cycle is the dominant one while the �100 kyr eccentricity periodicity is very small. Moreover,
unlike Figure 2a, the log-log plot of the power spectrum still shows the dominant peaks observed in the
top panel and a red-noise, power law relation is not present. Note that in the log-log plots the x axis has
logarithmic binning (i.e., the x axis is equally spaced on logarithmic scale) to assure good estimation of
the power law exponent.

C02005 ASHKENAZY ET AL.: SIMPLE STOCHASTIC MODELS FOR GLACIAL DYNAMICS

4 of 15

C02005



oscillations (Figure 1a). However, the nonlinearity we
discuss is not related to this asymmetry, but only to the
Fourier phases. Briefly, we define a time series to be linear
if its statistical properties are invariant under randomization
of the Fourier phases; that is, the statistical characteristics of
a linear series depend solely on the power spectrum and the
histogram but are independent of the Fourier phases
[Schreiber and Schmitz, 1996, 2000]. The statistical prop-
erties of nonlinear time series depend on the Fourier phases.
The histogram of the increment series (Dxi = xi+1 � xi)
reflects the asymmetry of the time series; a symmetric time
series will have a symmetric histogram for its increment
series. Because our definition for nonlinearity is related just
to the Fourier phases and not to the histogram, the asym-
metry of a time series is not related to the nonlinearity we
discuss here. Note that the above does not imply that the
asymmetry of a time series is always independent of the
Fourier phases.

[19] Recently, an additional type of nonlinearity was
identified in ice core data from Antarctica and Greenland
based upon the discovery that the magnitudes of climate
change are correlated [Ashkenazy et al., 2003a]. Given a time
series xi, the long-range correlations of the magnitude series
jxi+1 � xij reveal that the magnitude series is ‘‘clustered’’
[Ashkenazy et al., 2001, 2003b]. When the magnitude series
is uncorrelated, the magnitudes appear as white noise without
any ordering, while in correlated magnitude series the mag-
nitude series appear in clusters of large and small magnitudes;
see Figure A1 in Appendix A. It follows that a large
magnitude of climate change is likely to be followed by
another large magnitude of climate change, while a small
magnitude is likely to be followed by a small magnitude. The
nonlinear measure of magnitude series correlations may be
assessed using the surrogate data test for nonlinearity (Ap-
pendix B). In this test, different series that have the same
power spectrum and the same probability distribution as the
data are generated while the Fourier phases of the surrogate
data are random. Thus the nonlinearity of a time series that is
based on the Fourier phases is destroyed after applying the
surrogate data test for nonlinearity. If, indeed, long-range
correlations in the magnitude series indicate the nonlinearity
of the time series under consideration, they should not be
present in the surrogate linearized time series. In Figure 3awe
show the root mean square fluctuation function (calculated
using the second-order detrended fluctuation analysis, Ap-
pendix C) of the surrogate linearized data of the Vostok ice
core; the magnitude series of the surrogate data is uncorre-
lated white noise with an exponent a = 0.5 ± 0.05, while the
magnitude series of the original Vostok data is highly
correlated with an exponent of a � 0.8 (we obtain similar
exponent values from other ice cores [Ashkenazy et al.,
2003a]). The standard error of the slope indicating the
exponent value of the ice core data is 0.02. This test
demonstrates that long-range correlations in the magnitude
series reflect the nonlinearity of the original time series.
[20] Previous studies indicated that ice core data from

Greenland display a broad multifractal spectrum [Lovejoy
and Schertzer, 1986; Schmitt et al., 1995]. The multifractal
spectrum reflects the relation between the different moments
of the time series; the different moments of monofractal
(linear) series depend linearly on the second moment while
those of multifractal time series are nonlinearly related to
each other (Appendix A). In a recent study, we demonstrated
that ice core data from Antarctica display a broad multifractal
spectrum as well, where in this case most of the multifractal
broadness comes from the negative moments [Ashkenazy et
al., 2003a]; see Figure 3b. These broad spectra are an
additional measure of nonlinearity since a linear series
(which follows a scaling law and whose distribution does
not have broad tails) has a narrow multifractal spectrum.
Applying the surrogate data test to these series followed by
analysis of the spectrum, we find that the linearized surrogate
data multifractal spectrum is much narrower, indicating that
the multifractal spectrum also reflects the stochastic nonlin-
earity of the ice core data.
[21] The above observations suggest that ice age dynamics

is not a result of a linear process but rather has nonlinear
stochastic characteristics. The origin of these stochastic
nonlinear properties still remains unclear. The new measures
of nonlinearity described above indicate the need to reana-

Figure 3. (a) Root mean square fluctuation (Appendix C),
F(n), for the magnitudes, jDTij � jTi+1 � Tij, of the
temperature increments of Vostok ice core data shown in
Figure 1a [after Ashkenazy et al., 2003a]. Correlations in the
magnitudes jDTij (solid circles) are an indication of
stochastic nonlinearity of the original temperature time
series Ti. The correlations in the magnitude series jDTij
follow a scaling law F(n) � n0.8 and indicate clustering of
the magnitudes of temperature increments; i.e., a large jDTj
tends to follow a large jDTj and a small jDTj tends to follow
a small jDTj. To validate the nonlinearity of the temperature
increments series, a test for nonlinearity was applied after
which the Fourier phases become random while the
probability distribution and the power spectrum of the
temperature increment series remains almost unaffected
(Appendix B). Unlike the original Vostok ice core, the
magnitude series jDTij of the phase randomized increment
series is uncorrelated (open circles) with an exponent a =
0.5 ± 0.05. (b) The multifractal spectrum D(h) of the Vostok
data shown in Figure 1a [after Ashkenazy et al., 2003a]. The
multifractal spectrum is an additional measure for non-
linearity: A wide multifractal spectrum indicates a strong
nonlinearity of the series while a narrow multifractal
spectrum indicates a weaker nonlinearity. The multifractal
spectrum of the original Vostok data is wide (solid circles)
and thus indicates a nonlinearity of the original series. After
applying a surrogate data test for nonlinearity, the multi-
fractal spectrum becomes significantly narrower (open
circles) and thus confirms that multifractality is a measure
for nonlinearity.
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lyze existing stochastic models for glacial-interglacial dy-
namics to investigate whether or not they produce synthetic
climate histories with the same statistical properties as
measured in the ice cores. Below we investigate a series of
recent climate history models and demonstrate that they do
not account for the stochastic nonlinear properties of the
paleoclimate proxy data. We then suggest two possible
abstract models that could underlie the stochastic nonlinear-
ity of the ice core data. Ideally, these models should repro-
duce the two-point correlations (as reflected by the power
spectrum), the magnitude series correlations, and the shape
and broadness of the multifractal spectrum.

3. Models for Glacial Dynamics With Linear
Stochastic Forcing

[22] In this section we review a few published models for
glacial dynamics that reproduce some aspects of the statis-
tical properties characterizing the ice core proxy records.
We reanalyze these models and show that they do not
account for the stochastic nonlinear properties of the ice
core data described above.

3.1. ARMA Model

[23] The red-noise spectrum of the paleoclimate proxy
records may indicate that climate change is a simple integra-
tor of random changes in climate. Pelletier [1997] suggested
that changes in global temperature T over timescales of
several thousands of years up to millions of years follow

dT

dt
¼ �gT þ ht;

where ht is a Gaussian white noise and gT is a damping term
which keeps the model’s output from growing to infinity.
The power spectrum S( f ) of this equation is

S fð Þ � 1

g2 þ 2pfð Þ2
:

Note that this process is independent of the Fourier phases
and just depends on the power spectrum; substituting
random phases instead of the original Fourier phases will
produce similar dynamics. Thus this model is linear. On the
basis of physical arguments Pelletier [1997] suggested that
g = 1/(40 kyr); the power spectrum has a red-noise spectrum
S( f ) � 1/f 2 for large frequencies f > g and has a white noise
spectrum for small frequencies f 
 g. This model
reproduces the power spectrum of paleoclimate records,
i.e., red-noise spectrum for high frequencies, f > 1/(100 kyr),
and white noise (flat) spectrum for low frequencies, f <
1/(100 kyr). However, this model does not account for the
following important properties of the ice core data: (1) The
nonlinearity of the ice core data described above (section 2)
and (2) the asymmetry (long glaciations followed by rapid
deglaciation) of the ice core data.
[24] More advanced Auto Regression Moving Average

(ARMA) models [Wunsch, 2003] have similar drawbacks.
An ARMA process is defined as

xn ¼
Pp
i¼1

aixn�i þ �n;

where hn is Gaussian white noise. The ARMA process is a
linear process. In Figure 4 we show one realization of an

ARMA process with a relatively large number of coeffi-
cients, p = 20. The model does not display the asymmetry
and repetitive glacial periods of the ice core data. Moreover,
as expected from a linear model, the magnitude series of the
model’s output jxn+1 � xnj is uncorrelated (exponent of 0.5 ±
0.05) and the series xn is monofractal; therefore the
stochastic nonlinear properties of long-range correlations
of the magnitude series of the Vostok ice core data are not
reproduced.

3.2. Random Walk Plus Thresholds

[25] A slightly more advanced model for ice-volume
dynamics was suggested recently by Wunsch [2003]; the
goal of this model was to show that it is possible to visually
replicate a realistic time series for ice volume (that repre-
sents climate) by a simple stochastic model. The Wunsch
model can be summarized as follows. Ice volume V(t)
builds up randomly to a specified maximal threshold at
which point it breaks up rapidly and the volume decreases
to 0. Then, growth begins again. The ice volume thus
fluctuates between the maximal threshold and zero and
the ice-volume growth curve is similar to the growth of a
simple linear random walk. In the Wunsch model the
(maximal) threshold is subject to relatively small random
fluctuations; here we used a simplified version of this model
in which the threshold is fixed. We do not expect the results
presented here to be qualitatively different since the model’s
dynamics is dominantly linear, until the ice volume hits the
thresholds. A realization of this model (where the maximal
threshold is constant) is shown in Figure 5. This model
shows the asymmetry of the ice-volume data, which is one
of the main characteristics of the glacial dynamics. How-
ever, contrary to the proxy data for ice volume, the model
exhibits long periods with very low ice volume (high
temperature).
[26] The model described above is a piecewise linear

model; the growth of the ice volume is a simple random
walk, whereas the point at which the ice volume attains the
maximal ice-volume threshold and drops to zero is highly
nonlinear. Since the nonlinearity of the natural data (dis-
cussed above) concerns the clustering of the magnitude

Figure 4. An example of an auto regression moving
average (ARMA) process of order 20; we use the Vostok ice
core data to estimate the model’s parameters. The simulated
time series (black curve) has the same power spectrum as
seen in the Vostok data. However, it does not show the
asymmetry of long glacial periods followed by short
interglacial periods observed in the Vostok data (shaded
curve), and it does not exhibit correlations in the
magnitudes of the series’ increments. Note that an ARMA
process is by definition a linear process (i.e., its parameters
depend solely on the power spectrum but are independent of
the Fourier phases).
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series jVt+1 � Vtj [Ashkenazy et al., 2003a, Figure 1b] while
the Wunsch model is a piecewise linear model where the
growth itself is linear, the model is not expected to repro-
duce the magnitude correlations of ice core data. The effect
of the maximal ice-volume and zero thresholds is the
whitening (i.e., the crossover to ‘‘flatter’’ power spectrum
for lower frequencies) of the power spectrum for large
scales (low frequencies) since these thresholds restrict the
ice volume to be finite (making the time series stationary)
and their random appearance leads to a random (white)
spectrum. In the bottom panel of Figure 5 we show the root
mean square fluctuation function F(n) calculated by the
second order detrended fluctuation analysis; while the
model’s ice volume V(t) is characterized by a scaling
exponent which is close to the observed scaling exponent
(a � 1.4 of the model compared to a = (b + 1)/2 � 1.6 of
the data; see Figure 2a), the scaling exponent of the
magnitude series indicates uncorrelated behavior similar to
that of white noise (exponent a � 0.5 ± 0.05 compared to
a � 0.8 of the ice core magnitude series; see Figure 3a). We
thus conclude that the random-walk model plus thresholds
is not consistent with the large ice volume during glacial
periods, nor with the stochastic nonlinearity of the ice core
data as described above (section 2).

[27] We also analyzed the stochastic resonance model for
ice-ages of Benzi et al. [1982]. Briefly, this model consists
of a two-state system (one cold glacial state and another
warm interglacial state) and random transitions between
them. This nonlinear model is also forced by a periodic
function which enhances the probability of switching from
one state to another. We find that the stochastic resonance
model does not reproduce the stochastic nonlinearity of the
ice core data as described above (section 2). This fact may
be understood as follows: Once ‘‘stuck’’ in a state, the
fluctuations are as linear as the stochastic forcing while, like
in Wunsch model, the sharp temporal nonlinear transitions
are not enough to reproduce the intrinsic nonlinearity of the
ice core data. It is most probable that the above arguments
are also valid for the recent coherence resonance model of
Pelletier [2003] which is based on the stochastic resonance
model of Benzi et al. [1982].

4. Models for Glacial Dynamics With Nonlinear
Stochastic Forcing

4.1. Nonlinear Stochastic Model Based on Nonlinear
External Stochastic Forcing

[28] The stochastic nonlinearity of ice core data as
expressed by the magnitude series long range correlations
and the broad multifractal spectrum point to an inherently
nonlinear stochastic mechanism. Recently, Bacry et al.
[2001] proposed a generalized multifractal random-walk
model consisting of Gaussian white noise multiplied by a
correlated lognormally distributed random variable. The
white noise controls the two-point correlations while the
correlated noise controls the multifractal spectrum width of
the model and hence its nonlinearity. We suggest a model
for glacial dynamics based on this multifractal random-walk
model. We start with a model for ice-volume dynamics
which has self-sustained asymmetric oscillations. Then we
add nonlinear noise to account for the stochastic nonlinear-
ity of the ice core data. Ice volume V was observed to be
negatively correlated with temperature T � �V [Petit et al.,
1999], i.e., colder conditions for larger ice volume; thus a
model for ice accumulation serves as a model for temper-
ature dynamics.
[29] The assumptions of our model (Figure 6) are as

follows.
[30] 1. The ice volume V changes with steps d + b/V; i.e.,

V(t + dt) = V(t) + d(t) + b/V(t).
[31] 2. When ice volume V ‘‘crosses’’ a critical volume

Vmax, b is set to be negative, b = b2 < 0. Ice volume is
considered to lie between 0.01Vmax and Vmax. When V =
0.01Vmax, b becomes b = b1 > 0 until V exceeds the
threshold Vmax.
[32] 3. The ice volume fluctuations d are the product of

two stochastic inputs, d(t) = z(t)hi(t). Here z and h are
Gaussian distributed random variables with zero mean and
unit variance.
[33] 4. Random switching between the states hi’s is

controlled by i(t) which is equal to [l(t)] where [�] stands
for the closest integer value. Here l is a random walk
described by l(t + dt) = l(t) + Cw(t), where C is the
switching range and w is another Gaussian random
variable with zero mean and unit variance (see top panel
of Figure 6).

Figure 5. (top) A realization of a model for ice volume
suggested by [Wunsch, 2003]. The model consists of a
random walk and ice-volume thresholds. Ice volume
increments are random and thus the ice volume itself is a
random walk. When the ice volume reaches a certain
maximal ice volume Vmax, it immediately drops to zero;
then growth resumes. The ice volume is always positive.
Although the ice volume is asymmetric, the low ice volume
in glaciation periods is inconsistent with the Vostok ice core
and other paleoclimate proxy data since they exhibit long
and cold glacial periods. (bottom) Scaling analysis of the
model. The ice-volume signal has a scaling behavior (solid
circles) as in Vostok ice core with a random-walk exponent
up to scale of 100 kyr and a crossover to random behavior
for larger scales (not shown). However, the magnitudes of
ice-volume increments of the model (open circles) are
uncorrelated in contrast to the strong correlations in the
Vostok magnitude series. Hence the model fails to
reproduce the stochastic nonlinearity we observed in the
ice core data.
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[34] The first and second assumptions describe the ran-
dom growth (with b = b1 > 0) of the ice sheets and their
rapid breakup (with b = b2 < 0) after crossing the critical
volume Vmax, similar to the Wunsch model described in
section 3.2; such thresholds may be related to the formation
of sea ice when the atmospheric temperature drops below a
certain temperature or alternatively when the ice sheets are
large enough such that the temperature is sufficiently low
[c.f. Gildor and Tziperman, 2000; Tziperman and Gildor,
2003] (see also Tziperman lecture, 2001). The 1/V term in
the first assumption mimics the reduced ice accumulation
for large ice volume, namely the temperature precipitation
feedback [Ghil and Treut, 1981; Gildor and Tziperman,
2000] (see also Tziperman lecture, 2001). Ice volume
fluctuations, d, result from two interacting random inputs
(third assumption) where one, z, may represent the atmo-
sphere, the other, h, may represent the ocean, and the
product, zh, may represent the atmosphere-ocean interac-
tion. In effect, the random switching that hi(t) is based on
results in correlated hi(t) [Hausdorff et al., 1995; Ashkenazy
et al., 2002]. The product zh thus forms a product of white
noise multiplied by a correlated random variable. Following
Bacry et al. [2001], this situation may lead to nonlinearity
and multifractality.
[35] The values of Vmax, b1, and b2 are constrained to

match the features seen in the natural record (Figure 1). In
our simulations we use dt = 0.1 kyr, Vmax = 1.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90 kyr=dt

p
,

b1 = 1, b2 = �3, and C = 0.27. We choose the value 90 kyr
in Vmax so that on average V will grow from zero to Vmax

after 90 kyr/dt steps. We choose the values of b1 and b2 such
that the ice sheet grows slowly and breaks up rapidly. The
switching parameter C determines the number of states h for

a given number of steps; the number of different states is
proportional to the square root of the number of steps (e.g.,
�3 states for 4 kyr and �5 for 10 kyr).
[36] Without noise the model exhibits self-sustained

oscillations (Figure 6, bottom panel). The solution of the
model without stochastic forcing is periodic,

V tð Þ ¼ V ~t þ ntð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b1~t þ V 2

min

q
0 � ~t < tupffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2b2 ~t � tup
� �

þ V 2
max

q
tup � ~t < t

;

8<
:

where n is an integer and

tup ¼
V 2
max � V 2

min

2b1
;

tdown ¼
V 2
min � V 2

max

2b2
;

t ¼ tup þ tdown ¼
1

2
V 2
max � V 2

min

� � 1

b1
� 1

b2


 �
:

Under the current choice of parameters the ice volume is an
asymmetric periodic function with long glacial periods
followed by short interglacial periods, as seen in the ice core
records from both the Arctic and Antarctic.
[37] An example of an arbitrary realization of 400 kyr

time series produced by the model with stochastic forcing is
shown in Figure 7a. The natural asymmetry of long glacial
periods followed by short interglacials is reproduced. The
scaling of the model’s V series (Figure 7b) indicates
random-walk behavior with a power spectrum exponent
b � 2.2 (or a = (b + 1)/2 = 1.6) as seen for the Vostok core,
Figure 2a. The magnitude series jDVj is long-range corre-
lated with an a exponent �0.8 (Figure 7c) as also measured
in the climate record of the Vostok core (Figure 3a); the
average ±1 standard deviation of 10 realizations is 0.8 ±
0.05. The surrogate data test applied to the DV series
changes the magnitude series into an uncorrelated one,
indicating the nonlinearity of the model. This nonlinearity
is due to the product of the inputs h and z in the third
assumption. The multifractal spectrum of the time series is
broad where, as with the ice core data (Figure 3b), the
exponents for negative moments mainly contribute to its
broadness (Figure 7d). After the surrogate data test the
series becomes linear with a narrow multifractal spectrum
and is statistically different from the multifractal spectrum
of the original data.
[38] Although the model presented in this subsection

reproduces fairly well the statistical properties of the ice
core data, it is quite abstract and does not associate specific
physical processes with the glacial dynamics. In the next
subsection we offer a more realistic stochastic model for
climate dynamics.

4.2. Nonlinear Stochastic Model Based on Nonlinear
Interaction Between External Stochastic Linear Forcing
and Model’s Ice-Volume Variable

[39] As in the previous subsection, we begin with a model
for ice volume that exhibits self-sustained asymmetric
oscillations and then add stochastic forcing that mimics
the nonlinear stochastic properties of the ice core data.
Unlike the previous subsection, the noise added to the

Figure 6. (top) An illustration for the transitions between
‘‘oceanic’’ modes of the thermohaline circulation. We
assume that the ocean mode is switched randomly to
neighboring modes which are random by themselves. This
oceanic noise is coupled to atmospheric noise which is
represented by white noise. (bottom) The model’s dynamics
without noise. The ice volume is periodic and asymmetric
with long glacial periods (tup) followed by short interglacial
periods (tdown = t � tup) as in the ice core data. When the
ice volume reaches a certain maximal ice volume, Vmax, a
negative bias is introduced and the ice volume starts
diminishing (melting). When reaching a minimal ice
volume, the bias becomes positive and growth begins again.
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system is not independent of the model’s dynamics, but
rather interacts with the model’s ice-volume variable.
[40] The deterministic model presented here is a simpli-

fied version of the sea-ice-switch model of Gildor and
Tziperman [2001] [see Ashkenazy and Tziperman, 2004].
This simplification allows easier construction of a nonlinear
stochastic model that accounts for the nonlinear features
found in the Vostok and other ice cores. The model’s
assumptions are as follows.
[41] 1. Changes in ice volume V(t) equal net precipitation

P (snow over land) minus ablation S (the sum of all
processes that reduce the ice sheet volume including melt-
ing, wind erosion, glacial surges, etc.). We assume that the
precipitation is large for small ice volume and small for
large ice volume, namely the temperature-precipitation
feedback [Ghil and Treut, 1981; Gildor, 2003]. We also

assume that the ablation rate is constant. Changes in ice
volume may be written as

dV

dt
¼ P � S ¼ p0 � kVð Þ � S;

where p0 is the precipitation rate in the absence of ice and k
is the ice-volume growth rate constant.
[42] 2. When the ice volume crosses a maximal ice volume

Vmax the precipitation rate reduces by a factor 1 � aon where
0 < aon < 1; aon represents the relative sea-ice area (sea-ice
area versus ocean area) when it exists.When the ice volume is
reduced below a minimal ice volume, Vmin, precipitation
returns to the normal rate. This assumption reflects the sea-
ice-switch mechanism [Gildor and Tziperman, 2001]; when
the ice volume is sufficiently large, the ocean temperature
drops (due to the increased albedo) below the freezing
temperature of seawater and a large sea-ice cover forms. This
leads to reduced precipitation over land due to: (1) less
evaporation due to the insulation effect of the sea ice,
(2) colder conditions caused by the high albedo of the sea
ice, and (3) the shift of the storm track toward the equator
[Gildor and Tziperman, 2000]. The model’s dynamics are
thus described by

dV

dt
¼ p0 � kVð Þ 1� að Þ � S;

where a = 0 when the sea-ice switch is OFF and a = aon (0 <
aon < 1) when the sea-ice switch is ON.
[43] 3. The ice volume is subject to random fluctuations,

d(t),

d tð Þ ¼ z tð Þ A1O tð Þ þ A2½ �; ð1Þ

where z(t) is Gaussian white noise, A1 and A2 are constant
parameters, and O(t) is

O tð Þ ¼
Z t

t�T

dV

dt0
dt0 ¼ V tð Þ � V t � Tð Þ; ð2Þ

where T is constant. We consider z(t) to represent rapid
atmospheric fluctuations [Hasselmann, 1976] and O(t) to
represent slow oceanic fluctuations. We assume that climate
fluctuations result partly from atmosphere-ocean interaction
(A1 parameter) and partly from fast atmospheric fluctuations
(A2 parameter). The oceanic fluctuations, O(t), are assumed
to be the sum of changes in ice volume; surges and melted
ice are assumed to change ocean temperature. The response
time T in equation (2) is assumed to be the mixing time of
the ocean. The model’s final dynamical equation is then

dV

dt
¼ p0 � kVð Þ 1� að Þ � S þ z tð Þ A1 V tð Þ � V t � Tð Þ½ � þ A2f g:

[44] In our simulation we used the following parameter
values: p0 = 0.25 Sv (1 Sv � 106 m3/s), S = 0.21 Sv, k =
1/(40 kyr), aon = 0.3, A1 = 0.29 kyr�1, A2 = 0.062 Sv, T =
2.3 kyr, and dt = 0.1 kyr. The values of p0, aon, and S are
consistent with previous studies [Gildor and Tziperman,
2000; Tziperman and Gildor, 2003; Ashkenazy and Tziper-
man, 2004], k is chosen according to Imbrie and Imbrie

Figure 7. (a) A realization of the nonlinear stochastic
model I (section 4.1 and Figure 6) with noise. The asymmetry
of the glacial-interglacial oscillations is similar to the
asymmetry of the Vostok data. The ice volume is confined
to be between the maximum and minimum thresholds (the
horizontal dashed lines). (b) The model’s power spectrum (of
the series shown in Figure 7a) exhibits similar features to that
of the Vostok data (Figure 2a). (c, d) Same as Figures 3a
and 3b. The nonlinear properties of the magnitude series
power law correlations and the wide multifractal spectrum
are reproduced by the model. After applying the surrogate
data test for nonlinearity (Appendix B), the magnitude series
becomes uncorrelated and the multifractal spectrum becomes
much narrower as also seen in the Vostok data.
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[1980] and Pelletier [1997], A1 and A2 are tuned to
reproduce the stochastic nonlinearity of the data, and T is
on the order of the mixing time of the ocean [Broecker,
1991; Hartmann, 1994] (i.e., few thousands of years).
[45] Without the stochastic fluctuations, the model exhib-

its self-sustained asymmetric oscillations, similar to that of
Gildor and Tziperman [2001] and Tziperman and Gildor
[2003]; i.e., long glacial periods followed by short intergla-
cial periods. When A1 is set to be zero, the model equation
accumulates white noise A2z(t) on top of the intrinsic
oscillations of the model. The random fluctuations will
cause changes in the fixed period of the glacial oscillations
but will not change the asymmetry of the model’s dynamics.
The fast atmospheric fluctuations represented by A2z(t) will
not cause changes in the stochastic nonlinear properties of
the climate records as described above. The nonlinear term,
A1z(t)O(t), which represents the atmosphere-ocean interac-
tion, controls the nonlinearity of the model’s ice volume.
[46] One realization of the model’s ice volume is shown

in Figure 8. The asymmetry of the ice-volume record is
reproduced by the model (Figure 8a) and also the clustering
of magnitudes of ice-volume increments (Figure 8b). The
two-point correlation function (the root mean square fluc-
tuation function) of the model’s ice volume is shown in
Figure 9a and exhibits long-range correlations, as seen in
the Vostok ice core data; the exponent a � 1.6 (Figure 9a) is
equivalent to the power spectrum exponent b = 2.2 of the
natural data (Figure 2a) since b = 2a � 1. As expected, the
two-point correlations remain unchanged after the Fourier
phase randomization test (Figure 9a). The magnitude series
jV(t + dt) � V(t)j (dt = 0.1 kyr) is correlated with exponent
a � 0.8 (Figure 9b, the average ± standard deviation of 10
realizations is 0.8 ± 0.05) as seen in the Vostok ice core data
(Figure 3a); the magnitude series obtained from the surro-
gate (linearized) phased randomized series is uncorrelated
with exponent a � 0.5 ± 0.05 where this exponent is
significantly different from the exponent of the original
model’s ice-volume series (presented in this subsection).

This test confirms that indeed our model exhibits stochastic
nonlinear behavior. The multifractal spectrum of the mod-
el’s ice volume is broad and becomes significantly narrower
for the surrogate (linearized) ice-volume series (Figures 9c
and 9d). This multifractal spectrum is also similar to the
multifractal spectrum of the natural data (Figure 3b).
[47] Unlike the model presented in section 4.1, the

fluctuations d(t) depend on the model’s variable, V(t)
(equations (1) and (2)). It follows from equation (1) that
when changes in ice volume are small, the nonlinearity
decreases. When the mixing time T is increased, the term
V(t) � V(t � T) is in general larger and thus the nonlinearity
is expected to increase (Figure 10a). In addition, when the
amplitude of the oceanic noise A1 increases, the stochastic
nonlinearity of the model strengthens (Figure 10b). How-
ever, the model’s stochastic nonlinearity is almost insensi-
tive to small changes (�10%) in these two parameters.
[48] In general, other deterministic climate models may

be generalized to reproduce the nonlinear stochastic char-
acteristics of paleoclimate data. This can be done by
coupling one of the model’s variables to external noise. It
should be noted, however, that such an approach will not

Figure 8. (a) A realization of the nonlinear stochastic
model II (section 4.2). As in Figure 7a, the asymmetry of
the glacial-interglacial oscillations is similar to that in the
Vostok data. The ice volume is confined to be between
minimum and maximum thresholds (the horizontal dashed
lines). (b) An enlargement from Figure 8a showing the
clustering of magnitudes of ice-volume increment, similar
to what we observed in the data dD from the Vostok ice core
[see Ashkenazy et al., 2003a]. The shaded area shows a
region of pronounced fluctuations.

Figure 9. The root mean square fluctuation function F(n)
calculated using second-order detrended fluctuation analysis
(see Appendix C) of (a) the model ice volume V(t) shown in
Figure 8 and (b) the magnitudes of ice-volume increments
jV(t + dt) � V(t)j before (squares) and after (triangles) the
phase randomization test (Appendix B). (c) The exponents
t(q) of different moments q before (solid circles) and after
(open circles) the phase randomization test. (d) The
multifractal spectrum D(h) before (solid circles) and after
(open circles) the phase randomization procedure. Note that
the magnitude series is correlated and the multifractal
spectrum is wide before the phase randomization procedure
and the magnitude series is uncorrelated and the multifractal
spectrum is narrow after the phase randomization proce-
dure, indicating the stochastic nonlinearity of the model.
These results are similar to what we observed in the Vostok
data (Figure 3 and Ashkenazy et al. [2003a]).
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necessarily lead to a reasonable reconstruction of both the
magnitude series correlations as well as the multifractal
spectrum; the nonlinear dynamics of climate models make
this reconstruction difficult. It took us considerable effort to
construct the stochastic nonlinear climate models presented
in this paper, and many were rejected before suitable ones
were found.

5. Summary

[49] Paleoclimate proxy records show evidence for
both Milankovitch forcing and stochastic variability. The
Milankovitch forcing is usually attributed to the presence
of Milankovitch frequencies in climate proxy records,
although the process is most probably nonlinear. On the
other hand, the power spectra of the proxy records also
show red-noise behavior, which may be a sign of a
stochastic underlying process. The majority of the power
spectrum is governed by the non-Milankovitch frequencies.
Thus we assume that the underlying process is mainly
driven by stochastic elements.
[50] Climate change fluctuations are in some cases con-

sidered to be due to linear stochastic noise. Recently, it has
been shown that this is not the case and that the noise
fluctuations have a unique pattern of clustering into more
and less volatile regions of climate fluctuations [Ashkenazy

et al., 2003a]. This pattern is reflected by correlations of the
magnitudes of climate increments and in a broad multi-
fractal spectrum; this pattern is not necessarily related to the
large-scale glacial dynamics. Here we propose two mecha-
nisms that may lead to such statistical properties. These
mechanisms involve interaction between a slowly varying
process (like the ocean) with a rapidly varying process (like
the atmosphere). The slow process might be external or
related to the internal dynamics of the model. This approach
is in some sense different than the approach of Hasselmann
[1976] where he proposed that on short timescales one sees
the rapidly varying atmospheric fluctuations while on long
timescales the oceanic fluctuations (which result from accu-
mulation of the fast atmospheric processes) are dominant.
Our results and models suggest that in fact even on large
timescales, rapid atmospheric fluctuations may amplify the
slow oceanic fluctuations.
[51] The stochastic nonlinearity of ice core data may be

used to test (1) stochastic models, (2) realistic models (like
general circulation ocean-atmosphere models), and (3) sim-
ple deterministic models that reproduce the red-noise spec-
trum of paleoclimate data. It is not guaranteed that addition
of external nonlinear noise to a deterministic model will
produce the correct stochastic nonlinearity, because glacial
models usually contain complex, nonlinear dynamics.
[52] Many models for glacial dynamics are deterministic

models that are forced by insolation changes. These kinds of
models are, in most cases, insufficient to account for the
red-noise spectrum of the climatic records. Moreover, even
if they account for the red-noise spectrum, it is unlikely that
they would reproduce the stochastic nonlinear properties
found in the ice core records. Instead, realistic models
should include both deterministic and stochastic elements.
Our approach was to first derive the general pattern of the
climate records (long glacial period followed by short
interglacial period) and then to add the noise to the system.
In order to reproduce the stochastic nonlinear properties of
the data, it is necessary that the noise be nonlinear (either
due to nonlinear external noise or due to linear noise that
interacts with the system’s variables). It is unlikely that
nonlinear recording underlies the stochastic nonlinear prop-
erties of paleoclimate data since these properties point to
unique power laws and a unique multifractal spectrum
suggesting processes that are time invariant and involve
‘‘interaction’’ between the slow and fast modes of the
system. Moreover, a monotonic nonlinear transformation,
as nonlinear recording is expected to be, is not considered to
be linear according to the definition we use [Schreiber and
Schmitz, 2000], and after applying the surrogate test for
nonlinearity of Schreiber and Schmitz [2000] the paleocli-
mate data is clearly nonlinear. While we took Gildor and
Tziperman’s [2000] as the base deterministic model, our
approach can be applied to other climate models, which
ideally should reproduce the nonlinear stochastic features of
the climate records. We proposed two models that reproduce
the nonlinear statistical characteristics of ice core proxy
records. We describe the nonlinear properties of the paleo-
climate proxy records as an interaction between slow
oceanic processes and fast atmospheric processes. We
recognize that it is still necessary to identify in a more
accurate way the processes that underlie the nonlinear
stochastic properties of the ice core data. However, to our

Figure 10. (a) Sensitivity test for the nonlinearity of the
nonlinear stochastic model II (section 4.2). Here we change
the parameter representing the mixing time of the ocean T
and estimate the nonlinear measure of correlation exponent
of the magnitudes of ice-volume increments (mean of 10
realizations ± 1 standard deviation); the other model’s
parameters are as in Figures 8 and 9. The vertical dashed
line indicates the value used in Figures 8 and 9. It is
apparent that the model’s nonlinearity is insensitive to small
changes (�10%) in the mixing time T. (b) Same as
Figure 10a for the amplitude of the oceanic noise A1. Also
here the model is robust to small changes in the amplitude
of the oceanic noise A1. The vertical dashed lines indicate
the values used in Figures 8 and 9.
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knowledge, there are no physically motivated models that
explain the stochastic nonlinear properties described here.
Thus the models suggested here are an important step
toward a more complete understanding of Earth’s climate
system.

Appendix A: Nonlinearity and Multifractality

[53] In this appendix we define linearity and nonlinearity
of a time series. We also review the relation between the
multifractality of a time series and its nonlinearity.
[54] Following Theiler et al. [1992] and Schreiber and

Schmitz [1996, 2000], we define a time series to be
‘‘linear’’ if it is possible to reproduce its statistical
properties from the power spectrum and the probability
distribution alone, regardless of the Fourier phases

[Schreiber and Schmitz, 2000]. This definition includes
(1) autoregression processes,

xn ¼
XM
i¼1

aixn�i þ
XL
i¼0

bihn�i; ðA1Þ

where h is Gaussian white noise, and (2) fractional
Brownian motion [Mandelbrot and van Ness, 1968]; the
output, xn, of these processes may undergo monotonic
nonlinear transformations,

sn ¼ s xnð Þ; ðA2Þ

and still be linear [Schreiber and Schmitz, 2000]. Thus the
probability distribution of sn does not influence the
nonlinearity as defined here. Processes which are not linear
are defined as ‘‘nonlinear.’’ It is possible to destroy the
nonlinearity of a time series by randomizing its Fourier
phases [see Schreiber and Schmitz, 2000, 1996]; see
Appendix B.

Figure A1. (a) A nonlinear (multifractal) time series
generated according to Arneodo et al. [1998] log-Poisson
algorithm. (b) The increment series of Figure A1a. The
‘‘clustering’’ into small and big fluctuations reflects
the stochastic nonlinearity of the multifractal time series.
(c) The surrogate (phase randomized data) series of the
increment series (Figure A1b). To generate the surrogate
data, we use the procedure of Schreiber and Schmitz [2000]
that keeps the histogram and the power spectrum of the
original time series almost unaffected but randomizes the
Fourier phases. The ‘‘clustering’’ of the original time series
(Figure A1b) is not visible any more after randomizing the
Fourier phases, indicating that indeed phase randomization
procedure destroyed the nonlinearity of the original
increment time series (Figure A1b). (d) The histogram of
the increment series of the original increment series
(Figure A1b) and of the surrogate increment series from
Figure A1c. As expected, the histogram of the original
increment series (solid line) is identical to the histogram of
the surrogate data (open circles). (e) The power spectra of
the original increment data shown in Figure A1b and of the
surrogate data shown in Figure A1c. As expected, the power
spectra are identical to each other, both indicating anti-
correlation with a correlation exponent b = �0.45 (b is
approximated by regression of S( f ) � 1/f b to the power
spectrum). In Figures A1d and A1e, we demonstrate that
although the histogram and power spectrum of the original
increment data is maintained, the surrogate data shown in
Figure A1c are very different from the original data shown
in Figure A1b. (f) The analytical scaling exponents of
different moments t(q) [Arneodo et al., 1998] for the
original series shown in Figure A1a and for the integrated
surrogate series shown in Figure A1c. The t(q) is curved for
the original nonlinear multifractal series and is straight for
the linearized time series. (g) The analytical multifractal
spectrum D(h) [Arneodo et al., 1998] for the original series
shown in Figure A1a and for the integrated surrogate series
shown in Figure A1c. The multifractal spectrum is wide for
the nonlinear multifractal series, and it collapses to a point
for the linearized surrogate time series.
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[55] The nonlinearity (or linearity) of a time series is
related to its multifractality. The definition of multifractality
is based on the partition function Zq(l) of a time series, sn,
and may be defined as [Barabasi and Vicsek, 1991]

Zq lð Þ ¼ h snþl � snj jqi; ðA3Þ

where hi stands for expectation value. In some cases, Zq(l)
obeys scaling laws,

Zq lð Þ � lzq : ðA4Þ

If the exponents zq are linearly dependent on q, the series sn
is ‘‘monofractal’’; otherwise sn is ‘‘multifractal’’ [e.g., Muzy
et al., 1994; Bacry et al., 2001]. Note that in the present
study we use an advanced method, the wavelet transform
modulus maxima method, to accurately estimate the
exponents of negative moments q < 0 (for details, see
Muzy et al. [1994]). This method uses a wavelet transform
that eliminates polynomial trends from the data; in our
analysis we used the eight-tap Daubechies discrete wavelet
transform [Daubechies, 1992].
[56] The two-point correlation function of an increment

time series Dsn � sn+1 � sn is defined as

A lð Þ ¼ hDsnDsnþli: ðA5Þ

For long-range correlated stationary Gaussian time series,

A lð Þ � l�g; ðA6Þ

where 0 < g < 1. In this case the exponent g is related to the
detrended fluctuation analysis exponent a of Dsn series by
[Taqqu et al., 1995; Makse et al., 1996]

Z2 lð Þ � hsnsnþli � lz2 � l2�g ¼ l2a: ðA7Þ

In addition, these exponents are related to the power
spectrum exponent b of the increment series Dsn,

S fð Þ � 1=f b; ðA8Þ

by
b ¼ 1� g ¼ 2a� 1: ðA9Þ

Thus the second moment only depends on the power
spectrum and is independent of the Fourier phases,

z2 ¼ 2a ¼ bþ 1: ðA10Þ

[57] For monofractal series [Muzy et al., 1993, 1994],

zq ¼ aq ¼ bþ 1

2
q: ðA11Þ

Thus the multifractal spectrum of a monofractal series is
independent of the Fourier phases. This implies that (1)
Gaussian long-range correlated time series with uncorre-
lated Fourier phases are monofractal and (2) after
randomizing the Fourier phases of a multifractal series, it
becomes monofractal.
[58] In summary, monofractal series are linear since their

statistical properties depend only on the power spectrum
(two-point correlations) and the probability distribution. On
the other hand, multifractal series are nonlinear since their

higher moments are not solely dependent on the probability
distribution and the power spectrum but are also related to
the Fourier phases; see Figure A1.

Appendix B: Surrogate Test for Nonlinearity

[59] Schreiber and Schmitz [1996, 2000] suggested an
algorithm which preserves both the original probability
distribution of the time series and its Fourier amplitudes
but randomizes the Fourier phases; thus this algorithm
preserves the linear properties of the time series but destroys
the nonlinear properties stored in the Fourier phases. The
algorithm is iterative and consists of the following steps:
(1) Store a sorted list of the original data {hk} and the power
spectrum {Sn} of {hk}. (2) Begin (l = 0) with a random shuffle
{hk

(l=0)} of the data {hk}. (3) Replace the power spectrum
{Sn

(l)} of {hk
(l)} by {Sn} (keeping the Fourier phases of {Sk

(l)})
and then transform back. (4) Sort the series obtained from
step 3. (5) Replace the sorted series from step 4 by the sorted
{hk} and then return to the presorting order (i.e., the order of
the series obtained from step 3); the resulting series is
{hk

(l+1)}. Repeat steps 3–5 until convergence, i.e., until series
from consecutive iterations will be almost the same.
[60] In order to check if a time series is linear or

nonlinear, it is possible to generate many surrogate linear
time series out of the original time series and then to check
how significant the nonlinearity of the original time series is
compared to the linearized surrogate time series; see
Figure A1. There are some limitations of the Schreiber
and Schmitz [2000] surrogate data test for nonlinearity: The
different realizations may not be completely independent of
each other and thus not uniformly span the probability space
[see Dolan and Spano, 2001]. We also applied more
advanced techniques that handle this technical problem
and obtained similar results.

Appendix C: Detrended Fluctuation Analysis
(DFA)

[61] Natural time series often exhibit irregular and com-
plex behavior. In many cases the time series are masked by
constant, linear, and polynomial trends. These trends are not
necessarily related to the intrinsic dynamics of the time
series and may cause erroneous estimation of the scaling
exponents; trends are also known to affect the power
spectrum. Peng et al. [1994] proposed a simple method,
the detrended fluctuation analysis (DFA), to eliminate
constant trends from natural time series; later, this technique
was generalized to exclude also higher-order polynomial
trends [Bunde et al., 2000].
[62] The DFA consists of the following steps:
[63] 1. Given a time series xi, create the profile,

y kð Þ ¼
XN
i¼1

xi � hxiið Þ;

where h�i stands for the average and N is the number of
elements in the time series.
[64] 2. Divide y(k) into windows of size n. For each

window calculate the local polynomial trend yn(k) by least
square fitting.
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[65] 3. Calculate the root mean square fluctuation func-
tion F(n) by subtracting from the profile y(k) the local
polynomial trend yn(k),

F nð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

y kð Þ � yn kð Þ½ �2
vuut :

[66] 4. Calculate F(n) for different window size; when the
series follows scaling laws, then F(n) � na. This exponent
can be estimated from the slope in a double logarithmic
(log-log) plot.
[67] The exponent a is related to the power spectrum

exponent b (S( f ) � 1/f b) by b = 2a � 1. The m-order DFA
eliminates polynomial trends of order m � 1 from the data.
When a = 0.5, the series is uncorrelated and corresponds to
white noise with b = 0. When a > 0.5, the series is
correlated and values in the series tend to persist; this is
because the low frequencies prevail (b > 0). When a < 0.5,
the series is anti-correlated and tends to alternate since the
high frequencies prevail (b < 0).
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