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Statistics of extremal intensities for Gaussian interfaces
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The extremal Fourier intensities are studied for stationary Edwards-Wilkinson-type, Gaussian, interfaces
with power-law dispersion. We calculate the probability distribution of the maximal intensity and find that,
generically, it does not coincide with the distribution of the integrated power speéteinroughness of the
surface, nor does it obey any of the known extreme statistics limit distributions. The Fisher-Tippett-Gumbel
limit distribution is, however, recovered in three cag@sin the nondispersivéwhite noise limit, (ii) for high
dimensions, andiii) when only short-wavelength modes are kept. In the last two cases the limit distribution
emerges in honconventional scenarios.
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I. INTRODUCTION cases have been clarified, Rdfk,8] have some examples of
them.
Extreme value statistiockVS) has traditionally found ap- A possible connection of EVS to non-Gaussian fluctua-

plications in the analysis of environmental and engineeringions of spatially averaged, or, global, quantities in critical
data, such as water level fluctuations or appliance lifetimeistrongly correlatedsystems has recently been rai$bd 6—
[1]. Recently there has been a surge of activity from physi21] in relation to both experimen{d6,21-25 and simula-
cists in modeling phenomena that are governed by the exions[26—28 for many-body systems as well as for environ-
tremal values of some random variable. Examples rangenental datd29,30. There are two striking characteristics of
from the low-temperature state in spin glasg&ls a variety  this ensemble of observations. First, the form of the PDF is
of disordered systems with traveling froritee Ref[3] fora  similar for these observabl¢$6,26 and second, these func-
brief review), and modeling corrosive fractufd], to depin-  tions bear a strong resemblance to the FTG distribution.
ning of surface$5,6], to relaxation in granular materiglg]. ~ There is some variation in form and there are some clear
A central notion in EVS is the existence of limit distribu- exceptions, but this approximate universality has been the
tions, that is, the extremal value in a batch of a large numbesubject of considerable debate in the literature.
of independent, identically distribute@id) random scalar More concrete connections to EVS have been found in
variables obeys a probability density functi@DPF), which  studies of the fluctuations of the roughness, or width, of in-
is limited to one of three main type4,8,9. It is the tail of  terfaces. The non-Gaussian nature of these fluctuations was
the PDF of the original variable, the parent PDF, that deterfirst discussed in Ref31], and in Refs[17,21,30,32-3}
mines which one of these three classes the EVS will belongamilies of PDFs were identified, all characterized by a
to. One distinguishes the Fisher-Tippett-Gum@€lG) dis-  single maximum, positive skewness, an exponential, or near
tribution, for a decay faster than any power law, the Fisherexponential, tail for large fluctuations above the mean, and
Tippett-Frehet(FTF), for power tail, and Weibull, for power even faster decay below it. In Gaussian interface models a
law at a finite edge. The limit PDFs can even be cast into agelation to the FTG distribution has been observed in several
single function with a parameter whose different ranges corinstances. Namely, the magnetization distribution of the 2D
respond to different traditional classes, see, e.g., [Réf. (two-dimensiongl XY model, in the low-temperature phase
The appearance of EVS limit distributions in physical sys-where vortices are rare, has been related to the roughness
tems is in itself interesting and yields a new tool for thedistribution in the stationary 2D Edwards-Wilkinson inter-
description of those systems, see, e.g., R8f.On the other face, and strong resemblance has been found to a formal
hand, there are instances when the quantities in question ageneralization of the FTG functidi26]. In another work on
either dependent, differently distributed or have several comthe 2D XY model, the FTG function was numerically ob-
ponents and thus generically do not belong to any of theserved for extremal mode selecti@b]. A strong connection
aforementioned EVS classes, see, e.g., RE10,11. to EVS comes from an analytic result on a 1D interface
Closely related to our present subject are the studies on theodel with long-range interactions, corresponding to a
distribution of local[12—-14 and global[15] extrema of the = Gaussian noise with f/power spectrum, where the rough-
height of surfaces. Whereas there is no general mathematicaéss of the interface turns out to be exactly of the FTG form
theory for the EVS of non-iid quantities, quite a few special[21].
Given the manifold occurrence of the FTG shape, we are
led to study the relation between EVS and the roughness of
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Edwards-Wilkinson case is recoveje®ue to their integra- general formulas for the extremal distributions calculated in
bility, they are ideal starting point for the study of more Sec. Ill A. In Sec. llIB the EVS for the magnetization
complex, strongly fluctuating systems. As the models diagomodes for theX'Y system in the frame of the Gaussian model
nalize into statistically independent modes, and the roughis investigated. The emergence of the FTG distribution in
ness equals the sum of the Fourier intensities, it is straighthree limiting cases is described in Sec. IV. The EVS of
forward to address the problem of possible connection t¢duare amplitudes from the expansion in sines and cosines is
EVS. Name|y, one can pose the question that Origina”y modiscussed in Sec. V. Section VI is devoted to a Comparison to
tivated our research: do the modes with the largest intensitiei§ie distribution of the roughness, and Sec. VII contains the
dominate the PDF of the roughness? Here we show that théoncluding remarks. The smallasymptotes of the extremal
answer to this question is no. In fact, this negative result, th&¥alue PDFs are derived in Appendixes A and B, and the
first main conclusion of this paper, is immediately apparenfinite-N correction to the extremal distribution is considered
once we construct the distribution of the maximal intensity,in Appendix C. Some details for the calculation of the PDF
an expression that turns out to be a generalized form of th#? the white noise limit is clarified in Appendix D, and in
Dedekind function. Besides being different from the distri- Appendix E we determine, fae>d, the initial asymptote of
bution of roughness, this function generically also deviate$he PDF of the roughness for comparison.
from the FTG or any known EVS limit distributions. The
reason for the deviation from conventional EVS is that the II. GAUSSIAN SURFACES IN ONE DIMENSION
independent modes have gapless dispersion and are strongly _
nonidentically distributed even for higher wave numbers. As A. 1% noise
a result, for each realization of the interface, the largest in- The interface at position on a one-dimensionaldE 1)
tensity comes from one of only a few soft modes. The EVSsubstrate is characterized by the heigbit). Replacingx by
is therefore effectively coming from a finite-size system,timet, h(t) can be thought of as the distance from the origin
even in the thermodynamic limit. of a random walker.

The main body of the paper concerns the study of the The roughness, or mean-square width, is given by
maximal intensity PDF, which is found to depend @mand
a. While there are no finite_cr_itic_adc_ or ac, marl_<ing w,(h)=[h(t)—h]?, )
thresholds to the known EVS limit distributions, we discover
three limits where FTG statistics sets if)) a—0, (i) d  where overbar denotes the average of walks, or interfaces in
—o0, (iii ) when only hard modes with wave vectors beyondihe interval Gst<T
a diverging radiuR are kept. Common in these cases is that
the thermodynamic limit can be taken beforehaNd; e, lfT

whereN is the total number of modes, so one chooses the F=2| F(tdt (2

Tlo

maximal intensity out of an infinite set, in contrast to the
conventional EVS procedure. The extremal value PDF be- ) . ) ) )
comes degenerate in all three cases in the sense that th8€ Fourier decomposition of the interface gives the ampli-
standard deviation shrinks to zero on the scale of the meaftt/des of the fluctuating modes we are interested in
This is similar to the traditional FTG scenario when such
degeneracy appears fbk—oc. Now, however, in each case
special scaling should be applied to resolve degeneracy and
reveal the FTG distribution. It is suggested that the FTG
limit in case(iii) is responsible for the numerically observed Here h(t) is defined onN, equidistant points te KAt, T
fit to the FTG function in Ref[35]. =NpAt) and we introduced the notatioN=(Ny—1)/2,
Finally, we turn to the question how the EVS changes byyjth N, assumed to be odd, before finally taking the thermo-

considering a different choice of expansion functionsyynamic limit N— . The roughness is then the integrated
(modes. This study further illuminates the fact that the EVS power spectrum

is not generically described by any of the traditional EVS

limit functions. Since the dominant contribution to the EVS 1 N

comes from a few modes, the EVS will depend on the spe- wyo(h)=— 2 lcnl?. (4

cific expansion functions. We find analytically a different N 7=1

family of extreme value PDFs for the intensities if the inter-

face is expanded in sines and cosines, albeit the overall shape In the models we consider, the time sigingt) has peri-

goes close to that of the PDF of the maximal Fourier inten-odic boundary condition, it exhibits fIf power spectrum,

sities. and the modes are independent Gaussian variables. The path
We organize the paper as follows. In Sec. Il we define theprobability is given by

Gaussian mode(Sec. Il A), present the basic formulas for

EVS for maximal Fourier intensitieSec. Il B, then in Sec. PLh(t)]cexp{ — S h(t)]}, (5

Il C evaluate the EVS for the model showindg hoise. Gen-

eral 1f¢ noise is considered in Sec. |l D. The case of arbi-where the actior is given in terms of Fourier intensities

trary substrate dimensionality is treated in Sec. lll, with the|c,|? as

N
h(t):nZN c,e?™T o =c*. (3)
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N N
S=ooT' ™ 2, nlc,l? (6) Pu(2)=Mq(2) 2,
= =

a

S (10

with exponenta defining the 1§ noise spectrumo is a The IPDF and the PDF vanish fa<0, the above formulas

parameter setting the effective surface tension and the powé®) and(10) are understood for non-negatize

of T originates from dimensional consideratidi3el]. Three limits are easily understood here. Firstait0,
The PDF of the roughness for the Gaussian model hake., the modes are identically distributed, we find

been extensively studied in Ref20,21,34. Fora=1 it was B —AN

found analytically to coincide with the FTG functid1], Mo(2)=(1-e 9" (11)

one of the limit functions of EVS. Nevertheless, the rough-

ness is not priori an extremal quantity and it remains an

open question why it obeys the EVS. One may argue that the a=\/¢(2)=ml\/6, (129

sum is dominated by the softer modes whose extremal values

Then the change of variables=ay+ y+In N, with

possibly determine the cumulative behavjd8,35. Moti- N
vated by this problem we study the largest contribution to v= lim ( 2 n1—InN|, (12b
sum(4). N\ N=1

An alternative choice of Fourier coefficients would be the - ,

set (Rec,)2 (Imc,)? as studied in Ref35]. These are the where{ is Riemann’s zeta function ang Euler’s constant,
n) n/ g . . . . . . ..

coefficients from the expansions by sines and cosines, and€lds the FTG distribution in thél— e limit

while this does not seem to be a physically significant modi- M (2 M —extf —e V7 13

fication, the EVS for this set is, in general, quantitatively o2(y))=Mere(y) =exil L (3

. . . 2

different from that of the intensitiefe,|“. Nevertheless, the Po(z(y))Z'(Y)— Peraly) =aexd —ay— y—e 7]

PDFs for the two sets are similar in shape and lead to the (13b

same physical conclusions, so we focus on thécs¢t along

most of the main text, and summarize the results on thdhe constants in Eq12) were used to scale the FTG distri-

(Rec)?,(Imc,)? at the end. bution so that the mean becomes zero and the variance one

[37]. Second and third, in both limita— o andz—o only

B. Extreme value distributions the moden=1 matters and one finds

We calculate the probability that the maximal intensity M, (z—2)=~M, (z2)=1—e" % (14a
|Cnl2.axis T¢ 12/ 0y, SO we shall actually determine the scal- .
ing function of the EVS. We denote the PDF for that extreme Pa(z—»)~P.(z)=€"" (14b

value byP ,(z), and the cumulative or integrated probability

distribution function(IPDF) by Already at this point we can draw one of the main con-

clusions of the present paper, namely, that for genertide

z extreme value PDFs are none of the known EVS limit func-
Ma(Z)ZJ P.(y)dy. () tions. This immediately follows from the fact that the
negativez and largez behavior of Eqs(9) and (10) is in-
compatible with those of the limit functions for the statistics
of maximal[1,8].

The breakdown of validity of the traditional EVS limit
distributions can be ascribed to the fact that,dor 0, due to
the n® dispersion, the distributions of the individual modes
are sufficiently different. Here “sufficiently” needs to be em-
phasized, because one can conceive sets of different parent
whereA,=n“/  is the normalization constant for the PDF PDFs for the modeg38] that lead to say the FTG function.

of the nth mode. After evaluating the integrals in H8) we Such is the case of a dispersion that has a gap at the origin or
find goes to a constant for high frequencies. Conversely, one

should not be surprised by the appearance of special PDFs
N different from the known limit distributions, because actually
M, (2)=]] (1-e ). (990  for any given PDF one can choose sets of different parent
n=1 distributions yielding that PDF in EVES].
It is easy to convince oneself that far>0 in formulas
In fact, for =1 product(9) is known from the defining (9) and(10) the limit N—oo can be taken and the resulting
formula of Dedekind’sy function, the latter also containing distribution has finite moments. Indeed, because of disper-
an extra power prefactdB86]. Despite the difference in the sion the exponential PDFs of individual modes decay in-
prefactor, we will refer to Eq(9) as a generalized Dedekind creasingly fast and so no singularities appear for &g
function. Differentiating(9) we arrive at the expression for conventional EVS, limit distributions arise because the mo-
the PDF of the maximal intensity ments of variable scale in singular ways in the thermody-

0

SinceM ,(2) is the probability that none dfc,|?s exceed
T* 1z/0,, we can express it as

N
2 o
M, (2)=]1 f'°”‘ ‘Ae "lel’dRec, dImc,, (8)
n=1J0
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FIG. 1. Distribution functions for thee=1 case evaluated nu- FIG. 2. The same as Fig. 1 on a semilogarithmic scale so as to

merically according to Eq(10) for various N's, each function better display the regions wheRy(z) is small.
scaled to unit average. The convergence is apparently fast for prac-
tical purposes. region gives a contribution of equal order, and in the end the
true asymptote differs from E@15) only in a scale factor in
namic limit, thus removing most of the details of the distri- the exponent
bution of the original random variables. Now, however, there
is no such singular scale and the strong dependence on the 27
statistics of the individual modes through the parameter Mi(z2)=\/—e "%
remains. This gives us a physical intuition about why the
EVS for intensities of interfaces with dispersion is not de- Eq.(A14) with Eq. (A12) for @=1. Derivation byz
scribed by any of the traditional limit distributions. ives the smalk asvmptote of the PDE
Furthermore, we can also immediately assert the differd ymp
ence between the PDF of the roughné®s studied in Ref. 5
[34], and PDF(10) of the maximal intensity component in P.(2)~ V2w o 26z 17
Eq. (4). An obvious deviation is in the physical scales, 1 62512 '
namely, while the maximal intensity is always of order
T!~ @ the mean roughness is like that only fa>1; it
diverges logarithmically forx=1, and stays finite for finite
sampling timesAt if a<1. Even when the scaling is the 4t ihe ascending part d?,(z).
same, for finitea>1, the two PDFs clearly diffefthe gen- We conclude the case of thefIoise by noting that the
erating function of the roughness PDF is given in Raf], PDF for roughnes#4) scales logarithmically il and ap-
whose Laplace transform is not EQL0)], and become the ,.54ches the FTG functidi2l]. In contrast, as shown above,
same only in the limita—ce, when then=1 mode domi-  girect extremal selection of the constituent intensities in Eq.
nates. A more detailed comparison will follow in Sec. VI. (4) leads to a nonsingular PDF, related to the Dedekind func-
tion, even in the thermodynamic limit. In short, we have the
C. Uf noise(a=1) FTG Qistribu_tion for the rpughness, which is not an extremal
) i ) quantity, while the EVS is not described by the FTG func-
While for largez the PDFP,(2) is pure exponential as tjon. Thus the question raised in RE21], namely, what kind

given in Eq.(14b), for general arguments one should resortof extremal value selection can possibly be responsible for
to numerical evaluation. Functiofl10) is shown for a se-

guence ofN’s in Figs. 1 and 2. FON=9 the curves are hard

(16)

As demonstrated in Fig. 3, the above expression is correct at
small z and provides a reasonable approximation over most

to distinguish by the naked eye, the approximation by finite 1t
N thus converges fast for practical purposes.
For small z, the expected nonanalytic behavior can be 01}
estimated in the following way: the product in E4.0) can ~
be approximated as E:’ 001 |
1/z
1 2
My(2)~ ] (nz)~z1’1(—>!~ \/—e ¥ (15 0.001 | exact
n=1 z z asymptote-——
0.0001 .
where we have used Stirling’s approximation for the facto- 0.1 P 1

rial. While here we took the terms with>>1/z as one, this
gives us a first hint of the expected functional form. Amore FIG. 3. The PDFP,(z) from Eq. (10) with N=100 and its
precise calculation in Appendix A shows that the large- smallz asymptote as given by EQL7).

056116-4



STATISTICS OF EXTREMAL INTENSITIES FOR.. .. PHYSICAL REVIEW B8, 056116 (2003

the FTG distribution of the roughness, has not been an-
swered and is left to further explorations.

D. General « X

Here we go beyond the flspectrum and investigate the s
noise for generalv. The special cases=0 anda=2 cor- N
respond to white noise and the Wiener progesdinary ran-
dom walk), respectively. The PDF of the roughness for
Gaussian noise for periodic and “windowbulk) boundary
condition has been studied in Ref80,34], and no« other 0 0'5 : 1 s = )
than 1 has been found for which the PDF coincided with any ' ’
of the known limit PDFs of extreme statistics. Z/<Z>

From the previous discussion it is clear that it is only for
a=a,=0 that EVS is given by the FTG function in finite FIG. 4. D_istribution functions fort_jzl and \_/ariou3a’s. We
dimensions. Concerning the smallsymptote, the IPDF is rescaledz by its mean(z) to get a variable of unit average. Far

given in Appendix A in Eq.(A14), whence differentiation 0.1 We show the sequence of approximants with
yields the PDF =10°,1,10° peaks moving upwards with increasihgto demon-

strate slow convergence.

P.(2)~ ETIETS (18 Ill. GENERAL DIMENSION

(2m)*%c(a) p( c(a))
———eXp — s

A. Extremal intensities

It is easy to generalize the above calculations to surfaces
wherec(a) is given in Eq.(A12). One can see that the above h(r) defined on a hypercubic lattice substrate of dimension
form becomes singular only in the—0 limit. While for any  and edge length. We retain the periodic boundary condition
finite «>0 the asymptote is obviously incompatible with the for substrate, so the natural expansiom@f) involves again
FTG function (13b), surprisingly, expressior(18) corre-  Fourier modes. The probability of a surfa@ is then char-
sponds to the generalized FTF function kbih maximum[8]  acterized by the effective actid20,34]
in the special case whdq the FTF power parameter, and
«a are related througlp =2 (k—1)=1/a. Function(18) does N
not equal the EVS distribution for largex it is not even S=aoL97%>)" |n|9[c,|2 (20
normalized to one, so this coincidence does not contradict .
the claim that the extreme value PDPg(z) are none of the )
known limit distributions of EVS. The FTF class is not ex- Here the rescaled wave vector(ny,n,, . .. ,ng) has inte-
pected to be of relevance here anyhow because the paredfe! components; such thagn;|<N, furthermore, the mark
PDFs of the constituent modes decay exponentially. ! |mpI|¢s that if ann is countgd ther-n |s_not,.and the. zero

When one evaluateB,(z), the convergence ifl is im- vector is excluded(The halving of the Brillouin zone is the
portant. TheN dependence has been determined in Appendisonsequence of the relatia=c* .) The above action for
C, whence it is apparent that convergence is fastfof unit

order and larger, but slows down for smalterWe give here 12

the asymptote in the region of slow decay<1, L

N E 08 r

P(2) =Py o(2)~M(2)—e N7 (19 ol o6}

: az N

<1 o4t

where we kept thél index for P when onlyN modes were 02y

counted. o L

The results of the evaluation & ,(z) are given in Figs. 4 4

and 5. If displayed on the scale when the mean is set to one, (z _ (z))/Az

see Fig. 4; for vanishing the PDFs develop a singularity as

eventually the_y approach the Dird@c Slow convergence in FIG. 5. The PDF with the same’s as in Fig. 4, butz is now

N for small « is also demonstrated; already far=0.1 one  ghjfted by its mearfz) and rescaled by its standard deviatibn to
has to go up to exceedingly lardés to get a satisfactory produce a variable of zero average and unit deviation.d=e0.1
approximation for the PDF. When the PDFs are shown withonly the curve with the large® is shown. The peaks decrease with
variance scaled to one, as in Fig. 5, the functions remaif. The PDFs tend to the FTG functigdashed ling The semilog-
nonsingular and tend towards the FTG distribution. arithmic inset magnifies the smd#-regions.
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a=2 corresponds to the stationary state of the original
Edwards-Wilkinson model, while fore=4 it gives the br
curvature-driven Mullins-Herring interface. For a genexal 0s |
=2k, kinteger, it is a Gaussian massless model with finite-
range, and for# 2k with interactions decaying like a power I 06}
law. A
Denoting the maximal value af,L% ¢|c,|? by z and its N 04
IPDF by M, 4(z), each mode gives a multiplicative factor
1—e " resulting in 02/
0 1
N 0 1 2 3
Mog(2)=I]" (1-e" "), (D) z/{z)
n
] FIG. 6. Distribution function for the maximum Fourier intensity
whence the PDF is statistics ford=a=2 and the FTG function scaled to unit mean
and the same variance.
S e
P.4(2)=M_ 42>’ AT (22 B. The 2D Edwards-Wilkinson model (a=2)
' ' noeM?-1

One of the physically most relevant caseslis2 and«

f=2, the stationary Edwards-Wilkinson surface as originally
defined. Since it is a massless Gaussian system, it also cor-
responds to th&X'Y model in that part of the low-temperature
ephase where the effect of vortices is negligible’]. There
the magnetization distribution is proportional, with a change

f sign, to the roughness of the Edwards-Wilkinson surface.

ccordingly, the distribution of the maximum amplitude of
the magnetization fluctuations, after proper scaling, should
be given by PDR22) for d=a=2. Figure 6 show®, 4z)
together with the FTG function normalized to the same mean
and variance. While the fact that the two functions are dif-
ferent is obvious, here we demonstrate that the functions
deviate significantly and in no range could they be mistaken
for each other. The large difference here is of importance
because the PDF, j(z) characterizes also th¢Y model, so

o this is an example when the FTG statistics is far from an
For finite o where all modes count, we have closed formsgys i a critical many-body system.

only for the asymptotes. In the largelimit, for any «>0
and fixedd, one obtains IV. ETG LIMITING CASES

IPDF (21) can be considered as a further generalization o
Dedekind’s original product formulg36]. As in one dimen-
sion, it is straightforward to show that fer>0 the above
functions remain finite and involve finite mean and varianc
in the limit N—co. Thus again no singular scaling is neces-
sary and so we do not expect that any of the known extrem
value limit PDFs emerge for generdl and «. However,
again as ind=1, for a=0 all independent modes become
identically distributed and we recover the FTG function after
proper scaling byN.

The largea limit of Eq. (22), for any fixed dimensioml,
is determined by the contribution of the mode$=1,

P.a(z)=de % (1-e %971 (23

P,d(z—»)~de 2 (24 A. Case(i): White noise limit a—0

As we have seen, far=0 the modes become identically
Since here, too, only the modés|=1 matter, the large-  distributed in Eq.(21), thus, because of the exponential de-
formula is obtained from PDE23) for a—c, by takingz  cay of the parent PDF for large one recovers the FTG
—o, which explains the fact that ER4) is independent of  function by proper scaling ilN. One may, therefore, expect
a. Forz—0 we determined in Appendix A the asymptote of that whenN=x is set first, the extreme value distribution
the logarithm of the IPDRV, 4(2), see Egs.(Al15) and converges to FTG fow—0, if proper scaling ina is ap-
(A16). One can easily convince oneself that the leading ternplied. Such a convergence is not part of the standard theory
for the logarithm ofP, 4(z) is the same as foM, 4(z), so  of the FTG limit[1,8], so we show here how it comes about.
we have for smalk, A numerical demonstration id=1 was given before in Fig.
5, now we derive it analytically for angl, and determine the
natural scaling of the variableby a.

d d
792 1+ ;)F( 1+~ Let us start out from the IPDF given by E(@®1). Expo-
NP, 4(z2)~— d . (25 nentiating the product into a sum, we realize that in the in-
Zd/adr(_> teresting region of, where—In M(2) is not too largez must
2 be large, thus we can linearize the logarithms. Then we no-
tice that for smalke the terms in the sum change slowly with
For generalz we have to evaluate expressi@@?2) numeri- |n|, therefore we assume that the sum can be replaced by an
cally. This poses no difficulties unless~0. integral. So we get
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INM,_04(2)=—5

1 ; e—lnl“z
2 [n[>0

77_d/2 .

~ —n%z.d—1
—F(d/Z) 1e n® +dn.

(26)

Asymptotic analysis of this expression is done in Appendi

D, and results in

§ d/a
In MaHO,d(Z)m_A( E) ) (27)
where
&= o (284
’7le2 20
AT V ad 2

valid in the region where is £ in leading order. Introducing
the variabley by the linear transformatioffor the constants
a,y see Eq(12)]

1
z=¢&+ E(ay+ v+InA), (29

and keepingy of the order of unity wherr—0 we get

A( §) d/ame_ay_‘y’

- (30

up to terms vanishing witkx. Since Eq(27) was the leading

term in the logarithm of the IPDF we get

—ay—y

M, oa(z)~e° , (31

which is IPDF (133 for the FTG-distributed variablgy.

X

PHYSICAL REVIEW B8, 056116 (2003

and, if we had only them, they would give rise to FTG, but
on different shells the intensities are non-iid variables.
Again we exponentiate produ¢2l) into a sum, and no-
tice that ifd is large, the entropic weight quickly increases
with |n|. Thus the dominant contribution comes from large
In|’s, so we replace the sum by an integral and again get
formula (26), which should be taken now for any fixed
>0 but in the limitd—oe. Its asymptotic analysis is similar
to that described foor— 0 in Appendix D, and gives

1 g d/a
In Ma'dﬂx(z)=—ﬁ(2) , (33
where
2 al2
§: ( Zee) dl*cy/27 (34)

providedz is of the order of¢. Next we introducey through

z=¢ 1+z ay+y— In 2a> (35
d 2
Keepingy at order unity whiled—«, we get
L(§ d/a%e*ayw a8
2alz ’
whence Eq(33) yields the IPDF
Madon(z)=e"¢ """, (37)

which coincides with the FTG distributiofi3a).

We can thus conclude that in high dimensions the ex-
tremal intensities belong to the FTG class. Furthermore, by
comparing Eq(32) with Eqg. (35 we can determine the av-
erage and standard deviation of the scaled maximal intensity

Since this IPDE has zero mean and unit variance, the lineg hamely,(zyod'~*? and Azecd ™ *2. Interestingly,(z) di-

transformation(29) is equivalently
z=(2)+yAz, (32

where(z) is the mean andz the standard deviation afup

verges only fore<<2, while it shrinks to zero whea>2, so

the latter case is an example of a nonconventional FTG limit,
when the maximal intensities are small although the intensi-
ties themselves are not bounded from above. While it is plau-
sible that strong enough dispersion can have the effect of an

to terms vanishing forr— 0. It thus follows that the scaled upper cutoff on the amplitude, the novelty here is the sharp
maximal intensitiez have an average diverging proportion- transition ata=2, the only value when the characteristic

ally to @™, and they scatter in a®(1) region about the
average.

B. Case(ii): High dimensions

We immediately recognize the FTG limit wheh— in
formula (23) of the PDF for largex, P.. 4(z). Indeed, the

PDF for the variable/= (z— y—In d)/a then goes over to the

FTG limit function (13b). Below we study thed—co limit

maximal intensities remain finite and positive. For all
>0, however, the scale of the standard deviation becomes
much smaller than that of the average, a feature of the con-
ventional FTG scenarifi,8].

C. Case(iii): Hard modes

We study the situation when the maximal amplitude is
selected only from among those with|=R>1, that is, the

for any fixed positivex and conclude that again FTG arises. very hard modes. We consider arbitrary but fixedand d.

This is far from obviousa priori because while in large Since we take the thermodynamic linkt—o, we are left
dimensions there are many modes in each shell of constamtith a single divergent paramet® Whereas all hard mode
[n|, so they have the same, exponential, parent distributiomtensities are quite small, they are of different scales and so

056116-7



GYORGYI et al. PHYSICAL REVIEW E 68, 056116 (2003

are essentially non-iid variables. Thus special considerations TABLE I. Order of the mean and standard deviation of the

are necessary to determine their EVS. scaled maximal intensitg in the FTG limit caseg(i)—(iii). For
The IPDF for the maximal hard mode amplitude is comparison the scales in the traditional scenario are also shown; see
text for the parameterd,r.
Ma,d<z,R>=HH’ (1-e N, (38  case (2) A= —(2?  Ad(z)
n|=R
) ) ) ) (i) a—0 at 1 a
ObviouslyR=1 gives the formerly studied IPDR1) in the  ji) g— o di-af2 g d-!
thermodynamic limit. The interesting region mis where (i) R— o R “InR R @ (INR)*
M(z) changes fast. At this stage we assume that in that rgjy n_ o (In Ny (InN)Vr—1 (InN)~*

gion Rz is large, but we should check the result for consis-
tency in the end. We can make from E§8) a sum in the
exponent, and since larda|’s are involved, we rewrite the emerges. In the latter case we consider batches of iid vari-

sum into an integral. In leading order we obtain ables, whose parent IPDF approaches 1 as-eapj for
—a large z. The divergent parameter is then the numbepf
INM,, 4(z,R—00)~ — exp — R%2), (39) variables in a batch. Then the statistics of the maximal values

within the batches becomes of FTG ty|@, and straightfor-

ward calculation yields the scales given in the last row of the
where table.

’7le2

B= T2

(40 V. SINE AND COSINE EXPANSION

_ _ _ S Based on physical intuition one may suspect that, in the
Careful consideration of the compounding logarithmic singu-absence of the traditional EVS limit for iid variables, the
larities leads to the observation that in terms of the variablextremal amplitude PDFs will depend on the choice of ex-

y, introduced by pansion functions. Given the periodic boundary conditions
for the surface, another natural choice of expansion functions
z=R" | ay+ 7,Jr|rE+d|n R-InInR|, (41) are the2 sines z;md cosines, whose cc_)efficients square_d are
d (Rec,)%,(Imc,)“. Below we show that indeed a new family

) o o o ] of PDFs arise for the maximal square amplitude in this case,
expressior(39) is just —e”*"” up to terms vanishing with s further illustrating deviation from the known EVS limit
increasingR. That is, we have recovered the FTG function fynctions. More motivation to look at these coefficients
(133 comes from the fact that the first EVS study in this area was

oAy done with such an expansion in RE85]. There, the FTG
Mga(z,R—2)~e ' (42) distribution was found numerically when soft modes were
discarded.
When the sine and cosine modes are considered sepa-
rately, we obtain the IPDF of L9/ o, being the maximum
of Réc, and Infc, as

where the linear transformatidd1) is understood. Compar-
ing Eq. (41) with Eq. (32) we find that the meafz) has the
leading singularityR™“In R, so in the relevant region of
R%z indeed diverges, as assumed in the above derivation.

N N
D. Scales of singularity Vi wd(2)= H/ f“ZJVZAne—\n\“\cn\zd Rec,dImc,.
Summarizing the aforementioned limits, we found that noJoJo

FTG emergesi) asa—0, (ii) for d—oo, and(iii) when only
hard modedfR<|n| with R—« are considered. While faw .
=0 the intensi|tie|s become iid and so FTG should be ex:l'hen one straightforwardly gets
pected, they ara priori non-iid in the casesii) and (iii). N
Nevertheless, fod—o we found that a shell of practicall ~ ' =
iid modes in the Brillouin zone becomes domir?ant, ) t¥1is M,q2=11" erf(\In[*z),
essentially explains why one of the known EVS limit distri-
butions emerged. On the other hand, in the case of harghence
modes we do not see iid intensities grouping, thus presently
we lack an intuitive explanation for FTG. Remarkably, how- o N a2 |n|%2
ever, a common feature of all the above cases is that the = = a,d(Z) , In[“%e _
distribution narrows down to a scale smaller than that of the “ Jmz erf(v/|n|*z)
average, a phenomenon also present in the traditional FTG
scenario. In Table | we summarize the scales of the mean anthis will be the basis for numerical evaluation where we go
standard deviation of the maximal amplitude, and comparep to anN where the curve in the figure visibly stabilizes.
them to the scales in the conventional limit when FTG For a— the |n|=1 modes numbering®dominate, so

(43

(44)

(45
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numerically for theXY model, and the FTG functiofi3b)
proved to be a good fit when soft modes were discarded from
the batches of intensities before the selection of the maximal
ones.

VI. COMPARISON WITH THE DISTRIBUTION
OF THE ROUGHNESS

Interestingly, there is a resemblance between the scaling
function of the extreme value PDFs fer>0 and those for
5 3 e the rough_nes$34] f(_)r a>d. Ngmely, both types of PDFs _
z/(z) have a single maximum, positive skewness, a nonanalytic
initial asymptote, and a dominantly exponential de¢tne
leading term in the logarithm of the PDF is linear for large
z). However similar they are qualitatively, the functions are

FIG. 7. The extreme value PO, (z), computed from Eq(45)
with a=d=1 (full line), the asymptotes for smatlfrom Eq. (47)

(dasheg, and for largez (48) (short dashed For comparison the diﬁerent', . .
maximal intensity PDFP,(z) from Fig. 1 is also showrdotted:; ~ A straightforward way to make the comparison quantita-
the two PDFs are very close, but distinct, as can be observed aldy/€ is to calculate the asymptotes of the PDFs. For small
near the maximuntsee inset the roughness PDF behaves as given by(Ed6) of Appen-

dix E, and the EVS PDF goes like E5). It is interesting
s to note that for the roughness the critieal=d, where the
erfd=1(/z). (46)  variance shrinks to zero on the scale of the mean, while for
Jnz the EVS the same type of criticality is observed tar=0.

Then both asymptotes can be cast in the common form
The largez formula for any « is also determined by the

2de”

P.4(2)=

softest modes, so it is just the asymptote of &) InP(y)ocy” dla-ac), (49
_ 2de ? where for the roughness and for EVS one should understand
Pad(z—2)~ , (47)  yaszandx, respectively.
NE

Furthermore, in 1D one can calculate the power prefactor
in front of the nonanalytic exponential, cf. Eq&l8) and
(E9), that again can be written in the same form, so in 1D
both PDFs are asymptotically

while for z—0 the logarithm of the PDF has the same lead-
ing term as the IPDF, given in EqB1) and (B2).
For the sake of demonstration we considerd=1, and

denote the corresponding PDF By. For smallz, Eq. (B3)

C
of Appendix B witha=1 gives the asymptote P(y)~C,y [Blama+2l2(a-ac) ex;{ - 1/(—3) ,
y a— g,
~ 7TC1 el (50)
Pi(2)~ e 1’ (48) . N :
V27572 albeit the proportionality constants in the two asymptotes are

different. What is more, in 1D both PDFs become the FTG
where ¢;=¢(1,1)=1.3320405 was computed from Eg. function in the limit @— a.. Note, however, that the two
(B2). The full function and the asymptotic formulas are il- kinds of PDFs have different asymptotes for larger argu-
lustrated in Fig. 7. Note that the deviation of the snzall- ments, whemny> «.
asymptote from the exact PDF never exceeds 0.25 even for We can put the threshold behavior in a short form. First,
larger z's. We also displayed the PDF of extremal intensity for both kinds of distributions there is(bower) critical value
P1(2) from Fig. 1, which is given by a different formula and (d/a)ﬁ, where, for increasing/«, on the scale of the mean
has a different mea¢z), but after rescaling goes surprisingly the distributions become the Dira and this threshold is 1

close toP,. Nevertheless, the two functions can still be dis-for the roughness and for the EVS. Then there is an upper
tinguished as shown in the inset of Fig. 7. This demonstrategfitical value @/ a)¢, which is the threshold for the respec-
that in the present case the EVS depends weakly on the ejive classical limit distribution, Gaussian for the roughness,
pansion functions. and FTG for the maximal intensity. For the roughness we
Interestingly, in the three limits yielding the FTG distri- have seefi17,34 that (d/«).=2 and for the maximal inten-
bution for the intensitiesc;|? in Sec. IV, the FTG function is  sity it is again ¢/a)i=%. So there is a region, 2d/a
found also for (Re,,)?,(Imc,)?, following derivations simi- <o, where the roughness is Gaussian, but the EVS is still
lar to the ones in Sec. IV C. So the FTG limits seem to benot given by any of the known limit distributions of EVS,
robust with respect to the choice of expansion functions. Theather by the generalized Dedekind function.
FTG function found for the case of hard modése equiva- There is a significant difference also in the finite-size cor-
lent of the result in Sec. IV Cexplains the finding of Ref. rection to the PDF. The PDF for the extremal amplitude con-
[35], where extremal square-coefficient statistics was studietlerges essentially exponentially fdsee Appendix C for the
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1D correction formulg while the correction to the roughness face models are, for fixed choice of variables, a two-
PDF can be shown to be algebraichin parameter family of functions with a nonanalytic part for
In sum, there is a strong qualitative resemblance betweesmall values, a single maximum, and an essentially exponen-
the shape of the roughness PDF {ord and the EVS, fur- tial tail. The functions look qualitatively similar, but vary
thermore, their initial asymptotes have similar functionalquantitatively over the range of parametdrand « studied.
forms, they are, however, distinctly different functions. It This family of curves is different from that found for the
remains to be clarified whether the similarity has someroughness distribution for the same parametes[34]. We
deeper reason or it is simply a mathematical coincidence. conclude that it is not possible to make a direct link between
non-Gaussian roughness fluctuations and extreme values in
these models. Given the multitude of recent observations of
VIl. CONCLUSION non-Gaussian fluctuations in experimental and in model

The results presented above bring us to a very definitstrongly correlated systems, as well as in the_ use of interface
conclusion concerning the relation between interface fluctua?0dels as phenomenological tools in describing such fluc-
tions and extremal statistics: the roughness PDF is not giveiiations, this seems like an important result. However, the
by the largest mode in the Gaussian interface model. This i&elevance of extreme values in more complex, non-Gaussian
true, even in the case=d=1, where the roughness PDF is SyStems remains an open quest_lon_and_lt W_ould.be interesting
the FTG distribution{21], one of the known limit functions o follow up this work with studies in this direction.
of extreme statistics. We showed, further, that the PDF was
none of the known EVS limit distributions and depended on ACKNOWLEDGMENTS
the statistics for the individual elements of the model. In
addition, one expects the boundary conditions to influenc
the shape of the PDFs. It should be added that, to the exte
that the Gaussian model is a universal family of massles NRS ACI Grant ,N.O‘ 2226. Qne 9f UZ.R) thank_s the_
models from the viewpoint of critical phenomena, the gener- .C(.)Ie Normale Supéeure for financial support during his
alized Dedekind PDFs are equally universal, depending OMISIt to Lyon.
the dimensionalityd and the dispersion parameter

It is worth pointing out that there is an analogy betweenAPPENDIX A: SMALL- zZ ASYMPTOTE OF THE EXTREME
the Gaussian distribution arising from the central limit theo- ~ VALUE DISTRIBUTION FOR THE INTENSITIES
rem, which applies for sums of random variables with finite 1.d=1
moments, and the extreme value limit distributions such as ) ]

FTG, which is about the maximal of those variables. Both Our starting formula is Eq(9) where, for smallz, we

limit distributions are related to a large ensemble of inde-€xpand terms with not too largeto leading order im®z.

pendent, identically distributed objects. The appear-1erms with largen’s must be considered without expansion.

ance of a non-Gaussian PDF for the integrated poweliOwever, exponentiating them the product becomes a sum of

spectrum (i.e., roughness in Gaussian systems logarithms, which we can replace by an integral as the terms

[16,17,21,23,26,31,32,34,B%s a consequence of strong dis- Vary slowly with n. Carefully treating various corrections

persion, whence follows the strongly nonidentical distribu-allows us to obtain the asymptote for £§).

tion of the modes. What we have illustrated in this paper is L€t us separate produc®) for the IPDF, whilez—0, as

that it is this same dispersion that generically excludes the M (z)=CD (A1)

known limit distributions of extreme statistics. To refine the @ '

picture, we found that if Gaussian central limit statistics is

excluded for the integrated variable because of dispersion,

FTG extremal statistics is also explicitly excluded, but the n, n,

reverse is not necessarily true: there is the region of finite c=[1] a—e "=~]] nez=2"«(n, ), (A2)

d/a=2, where the integrated power is Gaussian but the n=1 n=1

maximal Fourier intensity does not follow FTG. However,

we found three border cases where, by singular scaling, the 5 p( ~
=ex

This work was supported by the Hungarian Academy of
ciencegGrant Nos. OTKA T029792 and T043734nd by

FTG distribution arises. In the limie—0 the amplitudes > In[l-exg—n“2)]], (A3)

obviously become identically distributed. For the other cases, n=Natl

that is, in the limitd— < and when a large number of modes . . @ ;

are omitted near the center of the Brillouin zone, the numbe\erth (n,)“z small butn, large, i.e.,

of contributing modes diverge but the dispersion across the 1

zone remains. This result appears to broaden the scope of sn >1. (A4)

validity of the FTG distribution in EVS to non-iid variables. Zle

Furthermore, the special scalings that led to the emergence of

FTG in the border cases demonstrate new ways of extractinhe first inequality allows the linearization of the exponen-

the known limit distribution even in the absence of the con-tial in Eq. (A2), whereas the second one will enable us to use

ventional FTG scenario. the Stirling formula in Eq(A2) and replace the sum in Eq.
In summary, the extreme value PDF for Gaussian inter{A3) by an integral.
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A short detour is necessary to see under what condition o
the correction to the term linear inin each factor of Eq.  C(@)= —f dulnfl1—exp(—u")]=¢
(A2) can be neglected. Including the next term in the expan- 0
sion we have

r

:

1+ =],

o
(A12)

1
1+ =
a

and so from Eq(A9) we get

n, 1 ; Na n,
c~]1 n“z(l——n“z)wex;{— > n“) n“z.
n=1 2 2 n=1

n=1 c(a) 1
(A5) IND~———+an,—| n,+5|In[(n,)“z]. (A13)
ze 2
The exponent in the prefactor goes Iikeﬂg“. So the pref- . .
actor can be taken as unity if we use mpthat satisfies Finally, Egs.(A7) and (A13) give
— 6 M @2m™ o) Al4
le(a+ 1) >na> 11 (A ) a(z)'\' \/E ex lea . ( )
a condition stricter than E¢A4). Then the approximation in  This is the sought after asymptote for smalin the sense
Eqg. (A2) indeed gives the asymptote Gf that its relative error vanishes far—0.
Now we can calculat€ from the right hand side of Eq. Remarkably, when we neglect the largeontribution, we
(A2) by using Stirling’s formula find the correct #* dependence in the argument of the
. exponential inM ,(z). However, the coefficiert(«) is only
Ny | e found by keeping terms with large Note, furthermore, that
~ gl & al2 . ;
C~z ( e) (2704) % (A7) inequality (A6) needsa>0. Thus we should not be sur-

prised that the asymptote far— 0 does not relate to the tail
To calculateD we first estimate the error incurred when of the FTG function(13b) for large negative argument.

the sum is written as an integral: given a functi(z), the In summary, the leading term of M(z) was produced by
terms in the sum of (n) fromn,+1 to < can be written to  exponentiating the product and rewriting the sum as an inte-
leading order gral. We shall follow this recipe below for general dimen-
sions.
n+1 1 ,
f(n+1)~ fn dx f00 + Ef (n+1). (A8) 2. Arbitrary dimension

] ) We consider here the asymptotes of IPQ&). The lead-
Performing the summation, we can replace the suf’@f  ing term of the logarithm of the IPDM, 4(2), in the small-
+1)’s by an integral in leading order and we finally find up 7 |imit, can be determined by transforming the sum over the
to the next-to-leading order modes of the Brillouin zone into an integral, becausezor

—0 the terms in the sum change slowly. Thus we obtain, to

o0 o 1 . .
D f(n+1)~f dx 00— 5(n,). (ag) ~leading orderir
n:nLY a
n In M clad) A15
This is the exponent of EGA3) with NM,q(2)~ i (A15)
f(x)=In[1—exp(—x*2)] (A10)  \where
whose integral can be written using= xz/* as 1
c(a,d)=— EJ duIn[1—exp(—|u|*)]
o0 1 S
dx f(x)= — duln[l—exp —u9)]
fna lea nallm F( 7Td/2£ 1+ 9)1“ 1+ 9
o o
1 de In[1—exp(—u®)] ) d | -
~—— uln[1—exp(—u“
Z1/01 0 dF(E)
_ [ i (A11)  Ford=1 we indeed recovet(a) of Eq. (AL2). Note that
zV*Jo Eq. (A15) does not give the full asymptote fM, it is only
the leading term in the exponent.
In the last line we used the smallnesswfone can easily In order to estimate the next-to-leading term fa¥lly(2)
convince oneself, from EqA6) that the higher order terms one can calculate the correction arising when the sum is
vanish. The definite integral is transformed into an integral. This is of the order of
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Considering ind=1 thea=1 case, we have a geometric

Inz :
Saia (A17)  series as
This correction diverges algebraically fdie>1, giving rise Ina(2)= 72 e M=e N(e?-1)7n. (C4
to a further exponential singularity in the IPDF. The asymp- =Nl
tote of M is therefore not as simple as in the 1D cé&&4). |t 4,>1 then
APPENDIX B: SMALL- z ASYMPTOTE IN THE CASE | (2)= i e N7_ - —nne 1y
OF THE SINE AND COSINE EXPANSION Noa1 i1 01
In this appendix we just summarize the results for the o
PDF of the maximal square coefficient for the sine and co- < e n(N+1)* 7z
sine expansion functions. The leading term for the logarithm n=N+1
of IPDF (44) comes from our making the sum an integral o (N+1)°z
5 T(a,d) T A (NF)
INMa(2)~———5—, (B1) 1-e
z %e—(N+ l)aZ. (CS)
where The last formula, an upper bound for the asymptote, is just
the first term in the sum. The sum has positive terms,
Cla,d)= _f d%u In[erf(|u]*"2)]. (82)  Wwhence it follows that the first term is at the same time the

In d=1, after a calculation along a line similar to the one
followed in Appendix A, we obtain the full asymptote

-]

c(a,1)
- Z1/0(

(277_)(1/2\/;
— = €X

24z

M, 1(2)~ (B3)

Note that the functional form is similar to the asymptote of

the IPDF for the maximal intensit§A14), but the constants
are different.

APPENDIX C: FINITE- N CORRECTION

asymptote ofl for a>1. Finally, in the caser<<1 we can
rewrite the sum fol into an integral, because if in EGA8)
we substitutee~"“Z for f(n) andN+ 1 for n,,, the correction
to the integral is negligible fosr>1 in the largeN limit. The
integral is approximatelyN*~“e N/« z, this is then the
sought asymptote fadr. In conclusion,

~e (N+1)%2 if a>1
Inat(2) =e Nqe—1)"! if a=1 (C6)
~Ni-2e "Nz if a<l.

We can summarize the above results for variagssuch that
if the summand in decays slowly, one can replace the sum

Here we calculate the correction of the extreme intensityoy an integral, and if it decays fast then the sum asymptoti-

distribution for largeN. Denoting now the finite produ¢2l)
by My.«.4(2z) and assuming\ to be large we obtain

MNad(Z)
TN T e Inlez
Ma,d |r'EN ( )
1
~1—— E ef‘n‘az
[n|>N
=1 Iy (D). (CD
Hence

MN,a,d(Z)%Ma,d(Z)[l—FIN,a,d(Z)]! (CZ)
PN,ad(2)~Pad(2) + M, a(2)1 4.4(2), (C3)

where the second line was obtained by differentiation and we
When z=d/ a€e, the argument of the erfc becomes a large

used the property thdtis negligible next ta " for large N.

From Eq.(C1) we surmise that the convergence to the
=00 functions is in essence exponentially fastNf; to be
specific, we give below for 1D the precise asymptote.

cally equals its first term.

APPENDIX D: ON THE FTG LIMITS

Below we derive Eq(28) from Eq.(26). We shall replace
the lower limit of integration 1 by, to show irrelevance of
the precise setting of the lower limit. Denoting the integral in
Eqg. (26) by | and changing the integration variable #o
=n%z we get

o

J’ @
noz

Since «—0, the lower integration limit becomes indeed
independent oh,. The saddle point method gives

| [ 7 [ d \% ‘ za—d
~ ﬁ% erici .

Jad

1

— —v,,dla—1
I ia e v dv.

(D1)

aZ

(D2)

negative number, where the erfc is approximately 2. Thus,
including the prefactor beforkin Eq. (26), we recover Eq.
(298).
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We have here an opportunity to test whether the sum imula in Eq.(E3) for E, substituting andF into Eq. (E2),
Eq. (26) was justly rewritten into an integral. We do not have and collecting all stray terms we wind up for largevith
rigorous results, but we know that the integral must not be
smaller than a single summand term, if it is, the integral Ga(s)~(2w)“’2\/§ex;{—sl"’g(a)], (E6)
representation cannot be accepted. A characteristic summand

term now ise ""Z~e ¥, wherev=(d— 1)/« is the saddle Where
point in Eq.(D1), so the summand term is small. Since we

con_siderz’s for_ which the full integral for—_ln M is O(1), . 9(a)= focduln(1+u’“)= ™ . (E7)

the integral is indeed much larger than a single characteristic 0 .

summand terne” . This is a generic test that the integral S'”(Z)

representation of a sum should pass, and we performed it in

all pertinent cases in the paper. The PDF of the roughness, normalized to unit mean, is ob-

tained by inverse Laplace transformation

APPENDIX E: SMALL- z ASYMPTOTE q

OF THE ROUGHNESS DISTRIBUTION P.(x)= j —S.eSXGa(i). E9)
1. One dimension,a>1 2 {(a)

We derive here the smatl-asymptote of the PDF of the For small x the large-reak region dominates, where the
roughness for the Gaussian model di“lhoise with periodic  saddle point method can be used. It suffices to compute the
boundary condition. We consider the case-1, when all  saddle point from the exponential of E@6), and then sub-
cumulants of the roughness are of the same order. In the casgtute its value into the/s prefactor. Taking into account
of the Wiener processg=2, the PDF has a nonanalytic also the quadratic deviation from the saddle point in the ex-
asymptote, which has been calculated in R81|. Here we  ponent, we finally obtain the small-asymptote
find that nonanalyticity prevails for alt>1. We begin with
the simplest form, free of normalizing constants, of the gen- R(a)
erating function[34] P, (X)~Q(a)x Ga~DR-1)ayy — e D) (E9)

o -1
G“(S):nll (1+ %) . (E1 where

] ) , ) ) (277)(“71)/2g(a)“(“71)

The average is given by-G/(0)={(a), where{ is Ri- Q(a)= ,
emann’s zeta function, so in order to obtain a PDF normal- Va—1[a(a)]@+D2ED
ized to unit average, in the end we should rescale (ay).

The larges asymptote of the generating function will give (a—1) g(a)*@D)
us the initial asymptote of the PDF. The calculation goes R(a)=
along the lines of Appendix A. For largewe can factorize
G, as

(E10

aa/(a—l) é/( (X) UWa—1)" (Ell)

2. Arbitrary dimension, a>d

Cu(s)=EF, &2 In general dimensions we can give here only the leading
where exponential for the initial asymptote of the PDF of the
roughness for periodic boundary condition. We consider the
a pa casea>d, else there is no sense in speaking about the as-
~H =s "a(n,!)?, (E3) ymptote for small roughness on the scalé ¢, see Ref.
[34]. The generating function yielding unit average is from
Ref. [34]

], (E9) S —1/2
Gua(s)= 11 (1+—) , (E12)
where In[>0 {(a,d)|n]

_¢‘1/(a+1)>na> 1. (E5) where

The first inequality ensures that E(E3) indeed gives the {a d)=£ 2 In|=@ (E13
asymptote folE, see Appendix A for an analogous estimate, ’ 2 jn>o0

and the largeness of, enables us to approximate the sum in

Eqg. (E4) by an integral. We also calculate Fithe nonvan- is ad-dimensional generalization of the zeta function. Expo-
ishing corrections to the integral, again in a way similar tonentiation of the product to a sum and transformation of the
what was done in Appendix A. Then using the Stirling for- sum to an integral gives the leading exponential term
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0Gu s~ | gad) (€14 R(a,d)
@ {(aa)) 9o NP, 4(X)~— ) (E16)
where
= d ey " wi
g(a,d) fo d%In(1+u|~%) a Tadl
dI'{ 5 |sin —
2 @
(E1H _ 2+ ol(a—d)
. . ) R(a,d)=
Performing the inverse Laplace transformation by the saddle d oT g sin 7T_d Had)de
point method, one arrives at the smallasymptote of the 2 o ,
PDF as (E1D
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The FTG IPDF is often written asMFTG(y)=e’efy. The
present form(13a, however, has a natural scale for the ex-
tremal variable. Namely, in order to test whether an empirical
extremal quantityz is of the FTG class, one can compute the
variabley=(z—(z))/Az, where(z) andAz are the mean and
the standard deviation af respectively, and compare the dis-
tribution of y to Eq. (13).

Traditionally, the term parent PDF refers to the single distribu-
tion function of iid variables, but we shall speak about parent
PDFs also in the case, when the variables are independent, but
differently distributed.



