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Statistics of extremal intensities for Gaussian interfaces
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The extremal Fourier intensities are studied for stationary Edwards-Wilkinson-type, Gaussian, interfaces
with power-law dispersion. We calculate the probability distribution of the maximal intensity and find that,
generically, it does not coincide with the distribution of the integrated power spectrum~i.e., roughness of the
surface!, nor does it obey any of the known extreme statistics limit distributions. The Fisher-Tippett-Gumbel
limit distribution is, however, recovered in three cases:~i! in the nondispersive~white noise! limit, ~ii ! for high
dimensions, and~iii ! when only short-wavelength modes are kept. In the last two cases the limit distribution
emerges in nonconventional scenarios.
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I. INTRODUCTION

Extreme value statistics~EVS! has traditionally found ap-
plications in the analysis of environmental and engineer
data, such as water level fluctuations or appliance lifeti
@1#. Recently there has been a surge of activity from phy
cists in modeling phenomena that are governed by the
tremal values of some random variable. Examples ra
from the low-temperature state in spin glasses@2#, a variety
of disordered systems with traveling fronts~see Ref.@3# for a
brief review!, and modeling corrosive fracture@4#, to depin-
ning of surfaces@5,6#, to relaxation in granular materials@7#.

A central notion in EVS is the existence of limit distribu
tions, that is, the extremal value in a batch of a large num
of independent, identically distributed~iid! random scalar
variables obeys a probability density function~PDF!, which
is limited to one of three main types@1,8,9#. It is the tail of
the PDF of the original variable, the parent PDF, that de
mines which one of these three classes the EVS will bel
to. One distinguishes the Fisher-Tippett-Gumbel~FTG! dis-
tribution, for a decay faster than any power law, the Fish
Tippett-Fréchet~FTF!, for power tail, and Weibull, for power
law at a finite edge. The limit PDFs can even be cast int
single function with a parameter whose different ranges c
respond to different traditional classes, see, e.g., Ref.@1#.

The appearance of EVS limit distributions in physical sy
tems is in itself interesting and yields a new tool for t
description of those systems, see, e.g., Ref.@2#. On the other
hand, there are instances when the quantities in question
either dependent, differently distributed or have several co
ponents and thus generically do not belong to any of
aforementioned EVS classes, see, e.g., Refs.@5,10,11#.
Closely related to our present subject are the studies on
distribution of local@12–14# and global@15# extrema of the
height of surfaces. Whereas there is no general mathema
theory for the EVS of non-iid quantities, quite a few spec
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cases have been clarified, Refs.@1,8# have some examples o
them.

A possible connection of EVS to non-Gaussian fluctu
tions of spatially averaged, or, global, quantities in critic
~strongly correlated! systems has recently been raised@5,16–
21# in relation to both experiments@16,21–25# and simula-
tions @26–28# for many-body systems as well as for enviro
mental data@29,30#. There are two striking characteristics o
this ensemble of observations. First, the form of the PDF
similar for these observables@16,26# and second, these func
tions bear a strong resemblance to the FTG distributi
There is some variation in form and there are some c
exceptions, but this approximate universality has been
subject of considerable debate in the literature.

More concrete connections to EVS have been found
studies of the fluctuations of the roughness, or width, of
terfaces. The non-Gaussian nature of these fluctuations
first discussed in Ref.@31#, and in Refs.@17,21,30,32–34#
families of PDFs were identified, all characterized by
single maximum, positive skewness, an exponential, or n
exponential, tail for large fluctuations above the mean, a
even faster decay below it. In Gaussian interface mode
relation to the FTG distribution has been observed in sev
instances. Namely, the magnetization distribution of the
~two-dimensional! XY model, in the low-temperature phas
where vortices are rare, has been related to the rough
distribution in the stationary 2D Edwards-Wilkinson inte
face, and strong resemblance has been found to a fo
generalization of the FTG function@26#. In another work on
the 2D XY model, the FTG function was numerically ob
served for extremal mode selection@35#. A strong connection
to EVS comes from an analytic result on a 1D interfa
model with long-range interactions, corresponding to
Gaussian noise with 1/f power spectrum, where the rough
ness of the interface turns out to be exactly of the FTG fo
@21#.

Given the manifold occurrence of the FTG shape, we
led to study the relation between EVS and the roughnes
Gaussian interface models. These models can be consid
as generalizations of the stationaryd-dimensional Edwards-
Wilkinson interfaces, specified by the exponenta in the
power-law dispersion of Fourier modes~for a52 the
©2003 The American Physical Society16-1
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Edwards-Wilkinson case is recovered!. Due to their integra-
bility, they are ideal starting point for the study of mo
complex, strongly fluctuating systems. As the models dia
nalize into statistically independent modes, and the rou
ness equals the sum of the Fourier intensities, it is strai
forward to address the problem of possible connection
EVS. Namely, one can pose the question that originally m
tivated our research: do the modes with the largest intens
dominate the PDF of the roughness? Here we show tha
answer to this question is no. In fact, this negative result,
first main conclusion of this paper, is immediately appar
once we construct the distribution of the maximal intens
an expression that turns out to be a generalized form of
Dedekind function. Besides being different from the dist
bution of roughness, this function generically also devia
from the FTG or any known EVS limit distributions. Th
reason for the deviation from conventional EVS is that
independent modes have gapless dispersion and are str
nonidentically distributed even for higher wave numbers.
a result, for each realization of the interface, the largest
tensity comes from one of only a few soft modes. The E
is therefore effectively coming from a finite-size syste
even in the thermodynamic limit.

The main body of the paper concerns the study of
maximal intensity PDF, which is found to depend ond and
a. While there are no finite criticaldc or ac , marking
thresholds to the known EVS limit distributions, we discov
three limits where FTG statistics sets in:~i! a→0, ~ii ! d
→`, ~iii ! when only hard modes with wave vectors beyo
a diverging radiusR are kept. Common in these cases is th
the thermodynamic limit can be taken beforehand,N→`,
whereN is the total number of modes, so one chooses
maximal intensity out of an infinite set, in contrast to t
conventional EVS procedure. The extremal value PDF
comes degenerate in all three cases in the sense tha
standard deviation shrinks to zero on the scale of the m
This is similar to the traditional FTG scenario when su
degeneracy appears forN→`. Now, however, in each cas
special scaling should be applied to resolve degeneracy
reveal the FTG distribution. It is suggested that the F
limit in case~iii ! is responsible for the numerically observe
fit to the FTG function in Ref.@35#.

Finally, we turn to the question how the EVS changes
considering a different choice of expansion functio
~modes!. This study further illuminates the fact that the EV
is not generically described by any of the traditional EV
limit functions. Since the dominant contribution to the EV
comes from a few modes, the EVS will depend on the s
cific expansion functions. We find analytically a differe
family of extreme value PDFs for the intensities if the inte
face is expanded in sines and cosines, albeit the overall s
goes close to that of the PDF of the maximal Fourier int
sities.

We organize the paper as follows. In Sec. II we define
Gaussian model~Sec. II A!, present the basic formulas fo
EVS for maximal Fourier intensities~Sec. II B!, then in Sec.
II C evaluate the EVS for the model showing 1/f noise. Gen-
eral 1/f a noise is considered in Sec. II D. The case of ar
trary substrate dimensionality is treated in Sec. III, with t
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general formulas for the extremal distributions calculated
Sec. III A. In Sec. III B the EVS for the magnetizatio
modes for theXY system in the frame of the Gaussian mod
is investigated. The emergence of the FTG distribution
three limiting cases is described in Sec. IV. The EVS
square amplitudes from the expansion in sines and cosin
discussed in Sec. V. Section VI is devoted to a compariso
the distribution of the roughness, and Sec. VII contains
concluding remarks. The small-z asymptotes of the extrema
value PDFs are derived in Appendixes A and B, and
finite-N correction to the extremal distribution is consider
in Appendix C. Some details for the calculation of the PD
in the white noise limit is clarified in Appendix D, and i
Appendix E we determine, fora.d, the initial asymptote of
the PDF of the roughness for comparison.

II. GAUSSIAN SURFACES IN ONE DIMENSION

A. 1Õf a noise

The interface at positionx on a one-dimensional (d51)
substrate is characterized by the heighth(x). Replacingx by
time t, h(t) can be thought of as the distance from the orig
of a random walker.

The roughness, or mean-square width, is given by

w2~h!5@h~ t !2h̄#2, ~1!

where overbar denotes the average of walks, or interface
the interval 0<t<T

F̄5
1

TE0

T

F~ t !dt. ~2!

The Fourier decomposition of the interface gives the am
tudes of the fluctuating modes we are interested in

h~ t !5 (
n52N

N

cne2p int/T, c2n5cn* . ~3!

Here h(t) is defined onN0 equidistant points (t5kDt,T
5N0Dt) and we introduced the notationN5(N021)/2,
with N0 assumed to be odd, before finally taking the therm
dynamic limit N→`. The roughness is then the integrat
power spectrum

w2~h!5
1

N (
n51

N

ucnu2. ~4!

In the models we consider, the time signalh(t) has peri-
odic boundary condition, it exhibits 1/f a power spectrum,
and the modes are independent Gaussian variables. The
probability is given by

P@h~ t !#}exp$2S@h~ t !#%, ~5!

where the actionS is given in terms of Fourier intensitie
ucnu2 as
6-2
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S5s0T12a (
n51

N

naucnu2, ~6!

with exponenta defining the 1/f a noise spectrum.s0 is a
parameter setting the effective surface tension and the po
of T originates from dimensional considerations@34#.

The PDF of the roughness for the Gaussian model
been extensively studied in Refs.@20,21,34#. Fora51 it was
found analytically to coincide with the FTG function@21#,
one of the limit functions of EVS. Nevertheless, the roug
ness is nota priori an extremal quantity and it remains a
open question why it obeys the EVS. One may argue that
sum is dominated by the softer modes whose extremal va
possibly determine the cumulative behavior@18,35#. Moti-
vated by this problem we study the largest contribution
sum ~4!.

An alternative choice of Fourier coefficients would be t
set (Recn)2,(Im cn)2, as studied in Ref.@35#. These are the
coefficients from the expansions by sines and cosines,
while this does not seem to be a physically significant mo
fication, the EVS for this set is, in general, quantitative
different from that of the intensitiesucnu2. Nevertheless, the
PDFs for the two sets are similar in shape and lead to
same physical conclusions, so we focus on the setucnu2 along
most of the main text, and summarize the results on
(Recn)2,(Imcn)2 at the end.

B. Extreme value distributions

We calculate the probability that the maximal intens
ucnumax

2 is Ta21z/s0, so we shall actually determine the sca
ing function of the EVS. We denote the PDF for that extre
value byPa(z), and the cumulative or integrated probabili
distribution function~IPDF! by

Ma~z!5E
0

z

Pa~y!dy. ~7!

Since Ma(z) is the probability that none ofucnu2’s exceed
Ta21z/s0, we can express it as

Ma~z!5 )
n51

N E
0

ucnu2<z
Ane2naucnu2d Recn d Im cn , ~8!

whereAn5na/p is the normalization constant for the PD
of thenth mode. After evaluating the integrals in Eq.~8! we
find

Ma~z!5 )
n51

N

~12e2naz!. ~9!

In fact, for a51 product ~9! is known from the defining
formula of Dedekind’sh function, the latter also containin
an extra power prefactor@36#. Despite the difference in the
prefactor, we will refer to Eq.~9! as a generalized Dedekin
function. Differentiating~9! we arrive at the expression fo
the PDF of the maximal intensity
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n51

N
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enaz21
. ~10!

The IPDF and the PDF vanish forz<0, the above formulas
~9! and ~10! are understood for non-negativez.

Three limits are easily understood here. First, ifa50,
i.e., the modes are identically distributed, we find

M0~z!5~12e2z!N. ~11!

Then the change of variablesz5ay1g1 ln N, with

a5Az~2!5p/A6, ~12a!

g5 lim
N→`

S (
n51

N

n212 ln ND , ~12b!

wherez is Riemann’s zeta function andg Euler’s constant,
yields the FTG distribution in theN→` limit

M0„z~y!…→MFTG~y!5exp@2e2ay2g#, ~13a!

P0„z~y!…z8~y!→PFTG~y!5a exp@2ay2g2e2ay2g#.

~13b!

The constants in Eq.~12! were used to scale the FTG distr
bution so that the mean becomes zero and the variance
@37#. Second and third, in both limitsa→` andz→` only
the moden51 matters and one finds

Ma~z→`!'M`~z!512e2z, ~14a!

Pa~z→`!'P`~z!5e2z. ~14b!

Already at this point we can draw one of the main co
clusions of the present paper, namely, that for generala the
extreme value PDFs are none of the known EVS limit fun
tions. This immediately follows from the fact that th
negative-z and large-z behavior of Eqs.~9! and ~10! is in-
compatible with those of the limit functions for the statisti
of maxima@1,8#.

The breakdown of validity of the traditional EVS limi
distributions can be ascribed to the fact that, fora.0, due to
the na dispersion, the distributions of the individual mod
are sufficiently different. Here ‘‘sufficiently’’ needs to be em
phasized, because one can conceive sets of different pa
PDFs for the modes@38# that lead to say the FTG function
Such is the case of a dispersion that has a gap at the orig
goes to a constant for high frequencies. Conversely,
should not be surprised by the appearance of special P
different from the known limit distributions, because actua
for any given PDF one can choose sets of different par
distributions yielding that PDF in EVS@8#.

It is easy to convince oneself that fora.0 in formulas
~9! and ~10! the limit N→` can be taken and the resultin
distribution has finite moments. Indeed, because of disp
sion the exponential PDFs of individual modes decay
creasingly fast and so no singularities appear for largeN. In
conventional EVS, limit distributions arise because the m
ments of variablez scale in singular ways in the thermody
6-3
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namic limit, thus removing most of the details of the dist
bution of the original random variables. Now, however, the
is no such singular scale and the strong dependence on
statistics of the individual modes through the parametea
remains. This gives us a physical intuition about why t
EVS for intensities of interfaces with dispersion is not d
scribed by any of the traditional limit distributions.

Furthermore, we can also immediately assert the dif
ence between the PDF of the roughness~4!, studied in Ref.
@34#, and PDF~10! of the maximal intensity component i
Eq. ~4!. An obvious deviation is in the physical scale
namely, while the maximal intensity is always of ord
T12a, the mean roughness is like that only fora.1; it
diverges logarithmically fora51, and stays finite for finite
sampling timesDt if a,1. Even when the scaling is th
same, for finitea.1, the two PDFs clearly differ@the gen-
erating function of the roughness PDF is given in Ref.@34#,
whose Laplace transform is not Eq.~10!#, and become the
same only in the limita→`, when then51 mode domi-
nates. A more detailed comparison will follow in Sec. VI.

C. 1Õf noise„aÄ1…

While for largez the PDFP1(z) is pure exponential as
given in Eq.~14b!, for general arguments one should res
to numerical evaluation. Function~10! is shown for a se-
quence ofN’s in Figs. 1 and 2. ForN>9 the curves are hard
to distinguish by the naked eye, the approximation by fin
N thus converges fast for practical purposes.

For small z, the expected nonanalytic behavior can
estimated in the following way: the product in Eq.~10! can
be approximated as

M1~z!' )
n51

1/z

~nz!'z1/zS 1

zD !'A2p

z
e21/z ~15!

where we have used Stirling’s approximation for the fac
rial. While here we took the terms withn.1/z as one, this
gives us a first hint of the expected functional form. A mo
precise calculation in Appendix A shows that the largen

FIG. 1. Distribution functions for thea51 case evaluated nu
merically according to Eq.~10! for various N’s, each function
scaled to unit average. The convergence is apparently fast for p
tical purposes.
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region gives a contribution of equal order, and in the end
true asymptote differs from Eq.~15! only in a scale factor in
the exponent

M1~z!'A2p

z
e2p2/6z, ~16!

see Eq.~A14! with Eq. ~A12! for a51. Derivation byz
gives the small-z asymptote of the PDF

P1~z!'
A2pp2

6z5/2
e2p2/6z. ~17!

As demonstrated in Fig. 3, the above expression is corre
small z and provides a reasonable approximation over m
of the ascending part ofP1(z).

We conclude the case of the 1/f noise by noting that the
PDF for roughness~4! scales logarithmically inN and ap-
proaches the FTG function@21#. In contrast, as shown above
direct extremal selection of the constituent intensities in E
~4! leads to a nonsingular PDF, related to the Dedekind fu
tion, even in the thermodynamic limit. In short, we have t
FTG distribution for the roughness, which is not an extrem
quantity, while the EVS is not described by the FTG fun
tion. Thus the question raised in Ref.@21#, namely, what kind
of extremal value selection can possibly be responsible

c-

FIG. 2. The same as Fig. 1 on a semilogarithmic scale so a
better display the regions whereP1(z) is small.

FIG. 3. The PDFP1(z) from Eq. ~10! with N5100 and its
small-z asymptote as given by Eq.~17!.
6-4
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the FTG distribution of the roughness, has not been
swered and is left to further explorations.

D. General a

Here we go beyond the 1/f spectrum and investigate th
noise for generala. The special casesa50 anda52 cor-
respond to white noise and the Wiener process~ordinary ran-
dom walk!, respectively. The PDF of the roughness f
Gaussian noise for periodic and ‘‘window’’~bulk! boundary
condition has been studied in Refs.@30,34#, and noa other
than 1 has been found for which the PDF coincided with a
of the known limit PDFs of extreme statistics.

From the previous discussion it is clear that it is only f
a5ac50 that EVS is given by the FTG function in finit
dimensions. Concerning the small-z asymptote, the IPDF is
given in Appendix A in Eq.~A14!, whence differentiation
yields the PDF

Pa~z!'
~2p!a/2c~a!

z3/211/a
expS 2

c~a!

z1/a D , ~18!

wherec(a) is given in Eq.~A12!. One can see that the abov
form becomes singular only in thea→0 limit. While for any
finite a.0 the asymptote is obviously incompatible with th
FTG function ~13b!, surprisingly, expression~18! corre-
sponds to the generalized FTF function forkth maximum@8#
in the special case whenk, the FTF power parameterm, and
a are related throughm52(k21)51/a. Function~18! does
not equal the EVS distribution for largerz, it is not even
normalized to one, so this coincidence does not contra
the claim that the extreme value PDFsPa(z) are none of the
known limit distributions of EVS. The FTF class is not e
pected to be of relevance here anyhow because the p
PDFs of the constituent modes decay exponentially.

When one evaluatesPa(z), the convergence inN is im-
portant. TheN dependence has been determined in Appen
C, whence it is apparent that convergence is fast fora of unit
order and larger, but slows down for smallera. We give here
the asymptote in the region of slow decay,a,1,

Pa~z!2PN,a~z!'Ma~z!
N

a z
e2Naz, ~19!

where we kept theN index for P when onlyN modes were
counted.

The results of the evaluation ofPa(z) are given in Figs. 4
and 5. If displayed on the scale when the mean is set to
see Fig. 4; for vanishinga the PDFs develop a singularity a
eventually they approach the Diracd. Slow convergence in
N for small a is also demonstrated; already fora50.1 one
has to go up to exceedingly largeN’s to get a satisfactory
approximation for the PDF. When the PDFs are shown w
variance scaled to one, as in Fig. 5, the functions rem
nonsingular and tend towards the FTG distribution.
05611
n-

y

ct

ent

ix

e,

h
in

III. GENERAL DIMENSION

A. Extremal intensities

It is easy to generalize the above calculations to surfa
h(r ) defined on a hypercubic lattice substrate of dimensiod
and edge lengthL. We retain the periodic boundary conditio
for substrate, so the natural expansion ofh(r ) involves again
Fourier modes. The probability of a surface~5! is then char-
acterized by the effective action@20,34#

S5s0Ld2a( 8
n

N

unuaucnu2. ~20!

Here the rescaled wave vectorn5(n1 ,n2 , . . . ,nd) has inte-
ger componentsni such thatuni u<N, furthermore, the mark
8 implies that if ann is counted then2n is not, and the zero
vector is excluded.~The halving of the Brillouin zone is the
consequence of the relationcn5c2n* .! The above action for

FIG. 4. Distribution functions ford51 and variousa ’s. We
rescaledz by its mean̂ z& to get a variable of unit average. Fora
50.1 we show the sequence of approximants withN
5105,106,107 peaks moving upwards with increasingN, to demon-
strate slow convergence.

FIG. 5. The PDF with the samea ’s as in Fig. 4, butz is now
shifted by its mean̂z& and rescaled by its standard deviationDz to
produce a variable of zero average and unit deviation. Fora50.1
only the curve with the largestN is shown. The peaks decrease wi
a. The PDFs tend to the FTG function~dashed line!. The semilog-
arithmic inset magnifies the small-P regions.
6-5
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GYÖRGYI et al. PHYSICAL REVIEW E 68, 056116 ~2003!
a52 corresponds to the stationary state of the origi
Edwards-Wilkinson model, while fora54 it gives the
curvature-driven Mullins-Herring interface. For a generala
52k, k integer, it is a Gaussian massless model with fin
range, and foraÞ2k with interactions decaying like a powe
law.

Denoting the maximal value ofs0Ld2aucnu2 by z and its
IPDF by Ma,d(z), each mode gives a multiplicative facto
12e2unuaz resulting in

Ma,d~z!5) 8
n

N

~12e2unuaz!, ~21!

whence the PDF is

Pa,d~z!5Ma,d~z!( 8
n

N unua

eunuaz21
. ~22!

IPDF ~21! can be considered as a further generalization
Dedekind’s original product formula@36#. As in one dimen-
sion, it is straightforward to show that fora.0 the above
functions remain finite and involve finite mean and varian
in the limit N→`. Thus again no singular scaling is nece
sary and so we do not expect that any of the known extre
value limit PDFs emerge for generald and a. However,
again as ind51, for a50 all independent modes becom
identically distributed and we recover the FTG function af
proper scaling byN.

The largea limit of Eq. ~22!, for any fixed dimensiond,
is determined by the contribution of the modesunu51,

P`,d~z!5d e2z~12e2z!d21. ~23!

For finite a where all modes count, we have closed form
only for the asymptotes. In the large-z limit, for any a.0
and fixedd, one obtains

Pa,d~z→`!'d e2z. ~24!

Since here, too, only the modesunu51 matter, the large-z
formula is obtained from PDF~23! for a→`, by takingz
→`, which explains the fact that Eq.~24! is independent of
a. For z→0 we determined in Appendix A the asymptote
the logarithm of the IPDFMa,d(z), see Eqs.~A15! and
~A16!. One can easily convince oneself that the leading te
for the logarithm ofPa,d(z) is the same as forMa,d(z), so
we have for smallz,

ln Pa,d~z!'2

pd/2zS 11
d

a DGS 11
d

a D
zd/adGS d

2D . ~25!

For generalz we have to evaluate expression~22! numeri-
cally. This poses no difficulties unlessa'0.
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B. The 2D Edwards-Wilkinson model „aÄ2…

One of the physically most relevant cases isd52 anda
52, the stationary Edwards-Wilkinson surface as origina
defined. Since it is a massless Gaussian system, it also
responds to theXY model in that part of the low-temperatur
phase where the effect of vortices is negligible@17#. There
the magnetization distribution is proportional, with a chan
of sign, to the roughness of the Edwards-Wilkinson surfa
Accordingly, the distribution of the maximum amplitude o
the magnetization fluctuations, after proper scaling, sho
be given by PDF~22! for d5a52. Figure 6 showsP2,2(z)
together with the FTG function normalized to the same me
and variance. While the fact that the two functions are d
ferent is obvious, here we demonstrate that the functi
deviate significantly and in no range could they be mistak
for each other. The large difference here is of importan
because the PDFP2,2(z) characterizes also theXY model, so
this is an example when the FTG statistics is far from
EVS in a critical many-body system.

IV. FTG LIMITING CASES

A. Case„i…: White noise limit a\0

As we have seen, fora50 the modes become identicall
distributed in Eq.~21!, thus, because of the exponential d
cay of the parent PDF for largez, one recovers the FTG
function by proper scaling inN. One may, therefore, expec
that whenN5` is set first, the extreme value distributio
converges to FTG fora→0, if proper scaling ina is ap-
plied. Such a convergence is not part of the standard the
of the FTG limit @1,8#, so we show here how it comes abou
A numerical demonstration ind51 was given before in Fig.
5, now we derive it analytically for anyd, and determine the
natural scaling of the variablez by a.

Let us start out from the IPDF given by Eq.~21!. Expo-
nentiating the product into a sum, we realize that in the
teresting region ofz, where2 ln M(z) is not too large,z must
be large, thus we can linearize the logarithms. Then we
tice that for smalla the terms in the sum change slowly wit
unu, therefore we assume that the sum can be replaced b
integral. So we get

FIG. 6. Distribution function for the maximum Fourier intensi
statistics ford5a52 and the FTG function scaled to unit mea
and the same variance.
6-6
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ln Ma→0,d~z!'2
1

2 (
unu.0

e2unuaz

'2
pd/2

G~d/2!
E

1

`

e2naznd21dn. ~26!

Asymptotic analysis of this expression is done in Appen
D, and results in

ln Ma→0,d~z!'2AS j

zD
d/a

, ~27!

where

j5
d

a e
, ~28a!

A5
pd/2

G~d/2!
A2p

ad
, ~28b!

valid in the region wherez is j in leading order. Introducing
the variabley by the linear transformation@for the constants
a,g see Eq.~12!#

z5j1
1

e
~ay1g1 ln A!, ~29!

and keepingy of the order of unity whena→0 we get

AS j

zD
d/a

'e2ay2g, ~30!

up to terms vanishing witha. Since Eq.~27! was the leading
term in the logarithm of the IPDF we get

Ma→0,d~z!'e2e2ay2g
, ~31!

which is IPDF ~13a! for the FTG-distributed variabley.
Since this IPDF has zero mean and unit variance, the lin
transformation~29! is equivalently

z5^z&1yDz, ~32!

where^z& is the mean andDz the standard deviation ofz up
to terms vanishing fora→0. It thus follows that the scaled
maximal intensitiesz have an average diverging proportio
ally to a21, and they scatter in anO(1) region about the
average.

B. Case„ii …: High dimensions

We immediately recognize the FTG limit whend→` in
formula ~23! of the PDF for largea, P`,d(z). Indeed, the
PDF for the variabley5(z2g2 ln d)/a then goes over to the
FTG limit function ~13b!. Below we study thed→` limit
for any fixed positivea and conclude that again FTG arise
This is far from obviousa priori because while in large
dimensions there are many modes in each shell of cons
unu, so they have the same, exponential, parent distribu
05611
x

ar

.

nt
n

and, if we had only them, they would give rise to FTG, b
on different shells the intensities are non-iid variables.

Again we exponentiate product~21! into a sum, and no-
tice that if d is large, the entropic weight quickly increase
with unu. Thus the dominant contribution comes from lar
unu ’s, so we replace the sum by an integral and again
formula ~26!, which should be taken now for any fixeda
.0 but in the limitd→`. Its asymptotic analysis is simila
to that described fora→0 in Appendix D, and gives

ln Ma,d→`~z!52
1

A2a
S j

zD
d/a

, ~33!

where

j5
~2pe!a/2

a e
d12a/2, ~34!

providedz is of the order ofj. Next we introducey through

z5jF11
a

d S ay1g2
ln 2a

2 D G . ~35!

Keepingy at order unity whiled→`, we get

1

A2a
S j

zD
d/a

'e2ay2g, ~36!

whence Eq.~33! yields the IPDF

Ma,d→`~z!5e2e2ay2g
, ~37!

which coincides with the FTG distribution~13a!.
We can thus conclude that in high dimensions the

tremal intensities belong to the FTG class. Furthermore,
comparing Eq.~32! with Eq. ~35! we can determine the av
erage and standard deviation of the scaled maximal inten
z, namely,^z&}d12a/2 andDz}d2a/2. Interestingly,^z& di-
verges only fora,2, while it shrinks to zero whena.2, so
the latter case is an example of a nonconventional FTG lim
when the maximal intensities are small although the inten
ties themselves are not bounded from above. While it is pl
sible that strong enough dispersion can have the effect o
upper cutoff on the amplitude, the novelty here is the sh
transition ata52, the only value when the characterist
maximal intensities remain finite and positive. For alla
.0, however, the scale of the standard deviation beco
much smaller than that of the average, a feature of the c
ventional FTG scenario@1,8#.

C. Case„iii …: Hard modes

We study the situation when the maximal amplitude
selected only from among those withunu>R@1, that is, the
very hard modes. We consider arbitrary but fixeda and d.
Since we take the thermodynamic limitN→`, we are left
with a single divergent parameterR. Whereas all hard mode
intensities are quite small, they are of different scales and
6-7
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are essentially non-iid variables. Thus special considerat
are necessary to determine their EVS.

The IPDF for the maximal hard mode amplitude is

Ma,d~z,R!5 ) 8
unu>R

~12e2unuaz!. ~38!

ObviouslyR51 gives the formerly studied IPDF~21! in the
thermodynamic limit. The interesting region inz is where
M (z) changes fast. At this stage we assume that in that
gion Raz is large, but we should check the result for cons
tency in the end. We can make from Eq.~38! a sum in the
exponent, and since largeunu ’s are involved, we rewrite the
sum into an integral. In leading order we obtain

ln Ma,d~z,R→`!'2
BRd2a

z
exp~2Raz!, ~39!

where

B5
pd/2

a G~d/2!
. ~40!

Careful consideration of the compounding logarithmic sing
larities leads to the observation that in terms of the varia
y, introduced by

z5R2aS ay1g1 ln
B

d
1d ln R2 ln ln RD , ~41!

expression~39! is just 2e2ay2g up to terms vanishing with
increasingR. That is, we have recovered the FTG functi
~13a!

Ma,d~z,R→`!'e2e2ay2g
, ~42!

where the linear transformation~41! is understood. Compar
ing Eq. ~41! with Eq. ~32! we find that the mean̂z& has the
leading singularityR2a ln R, so in the relevant region ofz,
Raz indeed diverges, as assumed in the above derivatio

D. Scales of singularity

Summarizing the aforementioned limits, we found th
FTG emerges~i! asa→0, ~ii ! for d→`, and~iii ! when only
hard modesR<unu with R→` are considered. While fora
50 the intensities become iid and so FTG should be
pected, they area priori non-iid in the cases~ii ! and ~iii !.
Nevertheless, ford→` we found that a shell of practically
iid modes in the Brillouin zone becomes dominant, so t
essentially explains why one of the known EVS limit dist
butions emerged. On the other hand, in the case of h
modes we do not see iid intensities grouping, thus prese
we lack an intuitive explanation for FTG. Remarkably, ho
ever, a common feature of all the above cases is that
distribution narrows down to a scale smaller than that of
average, a phenomenon also present in the traditional F
scenario. In Table I we summarize the scales of the mean
standard deviation of the maximal amplitude, and comp
them to the scales in the conventional limit when FT
05611
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emerges. In the latter case we consider batches of iid v
ables, whose parent IPDF approaches 1 as exp(2azr) for
large z. The divergent parameter is then the numberN of
variables in a batch. Then the statistics of the maximal val
within the batches becomes of FTG type@8#, and straightfor-
ward calculation yields the scales given in the last row of
table.

V. SINE AND COSINE EXPANSION

Based on physical intuition one may suspect that, in
absence of the traditional EVS limit for iid variables, th
extremal amplitude PDFs will depend on the choice of e
pansion functions. Given the periodic boundary conditio
for the surface, another natural choice of expansion functi
are the sines and cosines, whose coefficients squared
(Recn)

2,(Im cn)
2. Below we show that indeed a new famil

of PDFs arise for the maximal square amplitude in this ca
thus further illustrating deviation from the known EVS lim
functions. More motivation to look at these coefficien
comes from the fact that the first EVS study in this area w
done with such an expansion in Ref.@35#. There, the FTG
distribution was found numerically when soft modes we
discarded.

When the sine and cosine modes are considered s
rately, we obtain the IPDF ofz La2d/s0 being the maximum
of Re2 cn and Im2 cn as

M̃a,d~z!5) 8
n

N E
0

AzE
0

Az
Ane2unuaucnu2d Recn d Im cn .

~43!

Then one straightforwardly gets

M̃a,d~z!5) 8
n

N

erf2~Aunuaz!, ~44!

whence

P̃a,d5
2M̃a,d~z!

Apz
( 8
N unua/2e2unuaz

erf~Aunuaz!
. ~45!

This will be the basis for numerical evaluation where we
up to anN where the curve in the figure visibly stabilizes.

For a→` the unu51 modes numbering 2d dominate, so

TABLE I. Order of the mean and standard deviation of t
scaled maximal intensityz in the FTG limit cases~i!–~iii !. For
comparison the scales in the traditional scenario are also shown
text for the parametersN,r .

Case ^z& Dz5A^z2&2^z&2 Dz/^z&

~i! a→0 a21 1 a
~ii ! d→` d12a/2 d2a/2 d21

~iii ! R→` R2a ln R R2a (ln R)21

iid N→` (ln N)1/r (ln N)1/r 21 (ln N)21
6-8
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P̃`,d~z!5
2de2z

Apz
erf2d21~Az!. ~46!

The large-z formula for any a is also determined by the
softest modes, so it is just the asymptote of Eq.~46!

P̃a,d~z→`!'
2de2z

Apz
, ~47!

while for z→0 the logarithm of the PDF has the same lea
ing term as the IPDF, given in Eqs.~B1! and ~B2!.

For the sake of demonstration we considera5d51, and
denote the corresponding PDF byP̃1. For smallz, Eq. ~B3!
of Appendix B witha51 gives the asymptote

P̃1~z!'
p c1

A2z5/2
e2c1 /z, ~48!

where c15 c̃(1,1)51.332 040 5 was computed from E
~B2!. The full function and the asymptotic formulas are
lustrated in Fig. 7. Note that the deviation of the smalz
asymptote from the exact PDF never exceeds 0.25 even
larger z’s. We also displayed the PDF of extremal intens
P1(z) from Fig. 1, which is given by a different formula an
has a different mean̂z&, but after rescaling goes surprising
close toP̃1. Nevertheless, the two functions can still be d
tinguished as shown in the inset of Fig. 7. This demonstra
that in the present case the EVS depends weakly on the
pansion functions.

Interestingly, in the three limits yielding the FTG distr
bution for the intensitiesuci u2 in Sec. IV, the FTG function is
found also for (Recn)

2,(Im cn)
2, following derivations simi-

lar to the ones in Sec. IV C. So the FTG limits seem to
robust with respect to the choice of expansion functions. T
FTG function found for the case of hard modes~the equiva-
lent of the result in Sec. IV C! explains the finding of Ref.
@35#, where extremal square-coefficient statistics was stud

FIG. 7. The extreme value PDFP̃1(z), computed from Eq.~45!
with a5d51 ~full line!, the asymptotes for smallz from Eq. ~47!
~dashed!, and for largez ~48! ~short dashed!. For comparison the
maximal intensity PDFP1(z) from Fig. 1 is also shown~dotted!;
the two PDFs are very close, but distinct, as can be observed
near the maximum~see inset!.
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numerically for theXY model, and the FTG function~13b!
proved to be a good fit when soft modes were discarded f
the batches of intensities before the selection of the maxi
ones.

VI. COMPARISON WITH THE DISTRIBUTION
OF THE ROUGHNESS

Interestingly, there is a resemblance between the sca
function of the extreme value PDFs fora.0 and those for
the roughness@34# for a.d. Namely, both types of PDFs
have a single maximum, positive skewness, a nonana
initial asymptote, and a dominantly exponential decay~the
leading term in the logarithm of the PDF is linear for larg
z). However similar they are qualitatively, the functions a
different.

A straightforward way to make the comparison quanti
tive is to calculate the asymptotes of the PDFs. For smax
the roughness PDF behaves as given by Eq.~E16! of Appen-
dix E, and the EVS PDF goes like Eq.~25!. It is interesting
to note that for the roughness the criticalac5d, where the
variance shrinks to zero on the scale of the mean, while
the EVS the same type of criticality is observed forac50.
Then both asymptotes can be cast in the common form

ln P~y!}y2d/(a2ac), ~49!

where for the roughness and for EVS one should unders
y asz andx, respectively.

Furthermore, in 1D one can calculate the power prefac
in front of the nonanalytic exponential, cf. Eqs.~18! and
~E9!, that again can be written in the same form, so in
both PDFs are asymptotically

P~y!'C1y2[3(a2ac)12]/2(a2ac) expS 2
C2

y1/(a2ac)D ,

~50!

albeit the proportionality constants in the two asymptotes
different. What is more, in 1D both PDFs become the FT
function in the limit a→ac . Note, however, that the two
kinds of PDFs have different asymptotes for larger arg
ments, whena.ac .

We can put the threshold behavior in a short form. Fir
for both kinds of distributions there is a~lower! critical value
(d/a)c

, , where, for increasingd/a, on the scale of the mea
the distributions become the Diracd, and this threshold is 1
for the roughness and̀ for the EVS. Then there is an uppe
critical value (d/a)c

u , which is the threshold for the respec
tive classical limit distribution, Gaussian for the roughne
and FTG for the maximal intensity. For the roughness
have seen@17,34# that (d/a)c

u52 and for the maximal inten-
sity it is again (d/a)c

u5`. So there is a region, 2<d/a
<`, where the roughness is Gaussian, but the EVS is
not given by any of the known limit distributions of EVS
rather by the generalized Dedekind function.

There is a significant difference also in the finite-size c
rection to the PDF. The PDF for the extremal amplitude co
verges essentially exponentially fast~see Appendix C for the

lso
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1D correction formula!, while the correction to the roughnes
PDF can be shown to be algebraic inN.

In sum, there is a strong qualitative resemblance betw
the shape of the roughness PDF fora.d and the EVS, fur-
thermore, their initial asymptotes have similar function
forms, they are, however, distinctly different functions.
remains to be clarified whether the similarity has so
deeper reason or it is simply a mathematical coincidence

VII. CONCLUSION

The results presented above bring us to a very defi
conclusion concerning the relation between interface fluc
tions and extremal statistics: the roughness PDF is not g
by the largest mode in the Gaussian interface model. Th
true, even in the casea5d51, where the roughness PDF
the FTG distribution@21#, one of the known limit functions
of extreme statistics. We showed, further, that the PDF w
none of the known EVS limit distributions and depended
the statistics for the individual elements of the model.
addition, one expects the boundary conditions to influe
the shape of the PDFs. It should be added that, to the ex
that the Gaussian model is a universal family of mass
models from the viewpoint of critical phenomena, the gen
alized Dedekind PDFs are equally universal, depending
the dimensionalityd and the dispersion parametera.

It is worth pointing out that there is an analogy betwe
the Gaussian distribution arising from the central limit the
rem, which applies for sums of random variables with fin
moments, and the extreme value limit distributions such
FTG, which is about the maximal of those variables. Bo
limit distributions are related to a large ensemble of ind
pendent, identically distributed objects. The appe
ance of a non-Gaussian PDF for the integrated po
spectrum ~i.e., roughness!, in Gaussian system
@16,17,21,23,26,31,32,34,35#, is a consequence of strong di
persion, whence follows the strongly nonidentical distrib
tion of the modes. What we have illustrated in this pape
that it is this same dispersion that generically excludes
known limit distributions of extreme statistics. To refine t
picture, we found that if Gaussian central limit statistics
excluded for the integrated variable because of dispers
FTG extremal statistics is also explicitly excluded, but t
reverse is not necessarily true: there is the region of fi
d/a>2, where the integrated power is Gaussian but
maximal Fourier intensity does not follow FTG. Howeve
we found three border cases where, by singular scaling,
FTG distribution arises. In the limita→0 the amplitudes
obviously become identically distributed. For the other cas
that is, in the limitd→` and when a large number of mode
are omitted near the center of the Brillouin zone, the num
of contributing modes diverge but the dispersion across
zone remains. This result appears to broaden the scop
validity of the FTG distribution in EVS to non-iid variables
Furthermore, the special scalings that led to the emergenc
FTG in the border cases demonstrate new ways of extrac
the known limit distribution even in the absence of the co
ventional FTG scenario.

In summary, the extreme value PDF for Gaussian in
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face models are, for fixed choice of variables, a tw
parameter family of functions with a nonanalytic part f
small values, a single maximum, and an essentially expon
tial tail. The functions look qualitatively similar, but var
quantitatively over the range of parametersd anda studied.
This family of curves is different from that found for th
roughness distribution for the same parametersa,d @34#. We
conclude that it is not possible to make a direct link betwe
non-Gaussian roughness fluctuations and extreme value
these models. Given the multitude of recent observation
non-Gaussian fluctuations in experimental and in mo
strongly correlated systems, as well as in the use of interf
models as phenomenological tools in describing such fl
tuations, this seems like an important result. However,
relevance of extreme values in more complex, non-Gaus
systems remains an open question and it would be interes
to follow up this work with studies in this direction.
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APPENDIX A: SMALL- z ASYMPTOTE OF THE EXTREME
VALUE DISTRIBUTION FOR THE INTENSITIES

1. dÄ1

Our starting formula is Eq.~9! where, for smallz, we
expand terms with not too largen to leading order innaz.
Terms with largern’s must be considered without expansio
However, exponentiating them the product becomes a sum
logarithms, which we can replace by an integral as the te
vary slowly with n. Carefully treating various correction
allows us to obtain the asymptote for Eq.~9!.

Let us separate product~9! for the IPDF, whilez→0, as

Ma~z!5CD, ~A1!

where

C5 )
n51

na

~12e2naz!' )
n51

na

naz5zna~na! !a, ~A2!

D5expS (
n5na11

`

ln@12exp~2naz!# D , ~A3!

with (na)az small butna large, i.e.,

1

z1/a
@na@1. ~A4!

The first inequality allows the linearization of the expone
tial in Eq. ~A2!, whereas the second one will enable us to u
the Stirling formula in Eq.~A2! and replace the sum in Eq
~A3! by an integral.
6-10
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A short detour is necessary to see under what condi
the correction to the term linear inz in each factor of Eq.
~A2! can be neglected. Including the next term in the exp
sion we have

C' )
n51

na

nazS 12
1

2
nazD'expS z

2 (
n51

na

naD )
n51

na

naz.

~A5!

The exponent in the prefactor goes likez na
a11 . So the pref-

actor can be taken as unity if we use anna that satisfies

1

z1/(a11)
@na@1, ~A6!

a condition stricter than Eq.~A4!. Then the approximation in
Eq. ~A2! indeed gives the asymptote ofC.

Now we can calculateC from the right hand side of Eq
~A2! by using Stirling’s formula

C'znaS na

e D ana

~2pna!a/2. ~A7!

To calculateD we first estimate the error incurred whe
the sum is written as an integral: given a functionf (z), the
terms in the sum off (n) from na11 to ` can be written to
leading order

f ~n11!'E
n

n11

dx f~x!1
1

2
f 8~n11!. ~A8!

Performing the summation, we can replace the sum off 8(n
11)’s by an integral in leading order and we finally find u
to the next-to-leading order

(
n5na

`

f ~n11!'E
na

`

dx f~x!2
1

2
f ~na!. ~A9!

This is the exponent of Eq.~A3! with

f ~x!5 ln@12exp~2xaz!# ~A10!

whose integral can be written usingu5xz1/a as

E
na

`

dx f~x!5
1

z1/aEnaz1/a

`

du ln@12exp~2ua!#

'
1

z1/aE0

`

du ln@12exp~2ua!#

2
a

z1/aE0

naz1/a

du ln u. ~A11!

In the last line we used the smallness ofu: one can easily
convince oneself, from Eq.~A6! that the higher order term
vanish. The definite integral is
05611
n

-
c~a!52E

0

`

du ln@12exp~2ua!#5zS 11
1

a DGS 11
1

a D ,

~A12!

and so from Eq.~A9! we get

ln D'2
c~a!

z1/a
1ana2S na1

1

2D ln@~na!az#. ~A13!

Finally, Eqs.~A7! and ~A13! give

Ma~z!'
~2p!a/2

Az
expS 2

c~a!

z1/a D . ~A14!

This is the sought after asymptote for smallz in the sense
that its relative error vanishes forz→0.

Remarkably, when we neglect the largen contribution, we
find the correct 1/z1/a dependence in the argument of th
exponential inMa(z). However, the coefficientc(a) is only
found by keeping terms with largen. Note, furthermore, that
inequality ~A6! needsa.0. Thus we should not be sur
prised that the asymptote fora→0 does not relate to the ta
of the FTG function~13b! for large negative argument.

In summary, the leading term of lnM(z) was produced by
exponentiating the product and rewriting the sum as an in
gral. We shall follow this recipe below for general dime
sions.

2. Arbitrary dimension

We consider here the asymptotes of IPDF~21!. The lead-
ing term of the logarithm of the IPDFMa,d(z), in the small-
z limit, can be determined by transforming the sum over
modes of the Brillouin zone into an integral, because foz
→0 the terms in the sum change slowly. Thus we obtain
leading order inz,

ln Ma,d~z!'2
c~a,d!

zd/a
, ~A15!

where

c~a,d!52
1

2E ddu ln@12exp~2uuua!#

5

pd/2zS 11
d

a DGS 11
d

a D
dGS d

2D . ~A16!

For d51 we indeed recoverc(a) of Eq. ~A12!. Note that
Eq. ~A15! does not give the full asymptote forM, it is only
the leading term in the exponent.

In order to estimate the next-to-leading term for lnMa,d(z)
one can calculate the correction arising when the sum
transformed into an integral. This is of the order of
6-11
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ln z

z(d21)/a
. ~A17!

This correction diverges algebraically ford.1, giving rise
to a further exponential singularity in the IPDF. The asym
tote ofM is therefore not as simple as in the 1D case~A14!.

APPENDIX B: SMALL- z ASYMPTOTE IN THE CASE
OF THE SINE AND COSINE EXPANSION

In this appendix we just summarize the results for
PDF of the maximal square coefficient for the sine and
sine expansion functions. The leading term for the logarit
of IPDF ~44! comes from our making the sum an integral

ln M̃a,d~z!'2
c̃~a,d!

zd/a
, ~B1!

where

c̃~a,d!52E ddu ln@erf~ uuua/2!#. ~B2!

In d51, after a calculation along a line similar to the o
followed in Appendix A, we obtain the full asymptote

M̃a,1~z!'
~2p!a/2Ap

2Az
expS 2

c̃~a,1!

z1/a D . ~B3!

Note that the functional form is similar to the asymptote
the IPDF for the maximal intensity~A14!, but the constants
are different.

APPENDIX C: FINITE- N CORRECTION

Here we calculate the correction of the extreme inten
distribution for largeN. Denoting now the finite product~21!
by MN,a,d(z) and assumingN to be large we obtain

MN,a,d~z!

Ma,d

5 ) 8
unu.N

~12e2unuaz!

'12
1

2
(

unu.N

e2unuaz

512I N,a,d~z!. ~C1!

Hence

MN,a,d~z!'Ma,d~z!@11I N,a,d~z!#, ~C2!

PN,a,d~z!'Pa,d~z!1Ma,d~z!I N,a,d8 ~z!, ~C3!

where the second line was obtained by differentiation and
used the property thatI is negligible next toI 8 for largeN.
From Eq. ~C1! we surmise that the convergence to theN
5` functions is in essence exponentially fast inNa; to be
specific, we give below for 1D the precise asymptote.
05611
-

e
-

f

y

e

Considering ind51 thea51 case, we have a geometr
series as

I N,1,1~z!5 (
n5N11

`

e2nz5e2Nz~ez21!21. ~C4!

If a.1 then

I N,a,1~z!5 (
n5N11

`

e2naz5 (
n5N11

`

e2n na21z

, (
n5N11

`

e2n (N11)a21z

5
e2(N11)az

12e2(N11)a21z

'e2(N11)az. ~C5!

The last formula, an upper bound for the asymptote, is
the first term in the sumI. The sum has positive terms
whence it follows that the first term is at the same time
asymptote ofI for a.1. Finally, in the casea,1 we can
rewrite the sum forI into an integral, because if in Eq.~A8!

we substitutee2naz for f (n) andN11 for na , the correction
to the integral is negligible fora.1 in the largeN limit. The
integral is approximatelyN12ae2Na

/a z, this is then the
sought asymptote forI. In conclusion,

I N,a,1~z!H 'e2(N11)az if a.1

5e2Nz~ez21!21 if a51

'N12ae2Naz/az if a,1.

~C6!

We can summarize the above results for variousas such that
if the summand inI decays slowly, one can replace the su
by an integral, and if it decays fast then the sum asympt
cally equals its first term.

APPENDIX D: ON THE FTG LIMITS

Below we derive Eq.~28! from Eq.~26!. We shall replace
the lower limit of integration 1 byn0 to show irrelevance of
the precise setting of the lower limit. Denoting the integral
Eq. ~26! by I and changing the integration variable tov
5naz we get

I 5
1

a zd/aEn0
az

`

e2vvd/a21dv. ~D1!

Sincea→0, the lower integration limit becomesz, indeed
independent ofn0. The saddle point method gives

I'A p

2adS d

zaeD d/a

erfcS za2d

Aad
D . ~D2!

When z'd/ae, the argument of the erfc becomes a lar
negative number, where the erfc is approximately 2. Th
including the prefactor beforeI in Eq. ~26!, we recover Eq.
~28!.
6-12
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We have here an opportunity to test whether the sum
Eq. ~26! was justly rewritten into an integral. We do not ha
rigorous results, but we know that the integral must not
smaller than a single summand term, if it is, the integ
representation cannot be accepted. A characteristic summ
term now ise2naz'e2v, wherev5(d21)/a is the saddle
point in Eq. ~D1!, so the summand term is small. Since w
considerz’s for which the full integral for2 ln M is O(1),
the integral is indeed much larger than a single character
summand terme2v. This is a generic test that the integr
representation of a sum should pass, and we performed
all pertinent cases in the paper.

APPENDIX E: SMALL- z ASYMPTOTE
OF THE ROUGHNESS DISTRIBUTION

1. One dimension,aÌ1

We derive here the small-x asymptote of the PDF of the
roughness for the Gaussian model of 1/f a noise with periodic
boundary condition. We consider the casea.1, when all
cumulants of the roughness are of the same order. In the
of the Wiener process,a52, the PDF has a nonanalyti
asymptote, which has been calculated in Ref.@31#. Here we
find that nonanalyticity prevails for alla.1. We begin with
the simplest form, free of normalizing constants, of the g
erating function@34#

Ga~s!5 )
n51

` S 11
s

naD 21

. ~E1!

The average is given by2Ga8 (0)5z(a), where z is Ri-
emann’s zeta function, so in order to obtain a PDF norm
ized to unit average, in the end we should rescale byz(a).

The large-s asymptote of the generating function will giv
us the initial asymptote of the PDF. The calculation go
along the lines of Appendix A. For larges we can factorize
Ga as

Ga~s!5EF, ~E2!

where

E5 )
n51

na S 11
s

naD 21

' )
n51

na na

s
5s2na~na! !a, ~E3!

F5expF2 (
n5na11

`

lnS 11
s

naD G , ~E4!

where

s1/(a11)@na@1. ~E5!

The first inequality ensures that Eq.~E3! indeed gives the
asymptote forE, see Appendix A for an analogous estima
and the largeness ofna enables us to approximate the sum
Eq. ~E4! by an integral. We also calculate inF the nonvan-
ishing corrections to the integral, again in a way similar
what was done in Appendix A. Then using the Stirling fo
05611
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mula in Eq.~E3! for E, substitutingE and F into Eq. ~E2!,
and collecting all stray terms we wind up for larges with

Ga~s!'~2p!a/2As exp@2s1/ag~a!#, ~E6!

where

g~a!5E
0

`

du ln~11u2a!5
p

sinS p

a D . ~E7!

The PDF of the roughness, normalized to unit mean, is
tained by inverse Laplace transformation

Pa~x!5E ds

2p i
esxGaS s

z~a! D . ~E8!

For small x the large-real-s region dominates, where th
saddle point method can be used. It suffices to compute
saddle point from the exponential of Eq.~E6!, and then sub-
stitute its value into theAs prefactor. Taking into accoun
also the quadratic deviation from the saddle point in the
ponent, we finally obtain the small-x asymptote

Pa~x!'Q~a!x2(3a21)/2(a21) expS 2
R~a!

x1/(a21)D , ~E9!

where

Q~a!5
~2p!(a21)/2g~a!a(a21)

Aa21@az~a!# (a11)/2(a21)
, ~E10!

R~a!5
~a21! g~a!a(a21)

aa/(a21) z~a!1/(a21)
. ~E11!

2. Arbitrary dimension, aÌd

In general dimensions we can give here only the lead
exponential for the initial asymptote of the PDF of th
roughness for periodic boundary condition. We consider
casea.d, else there is no sense in speaking about the
ymptote for small roughness on the scaleLd2a, see Ref.
@34#. The generating function yielding unit average is fro
Ref. @34#

Ga,d~s!5 )
unu.0

S 11
s

z~a,d!unua
D 21/2

, ~E12!

where

z~a,d!5
1

2
(

unu.0

unu2a ~E13!

is ad-dimensional generalization of the zeta function. Exp
nentiation of the product to a sum and transformation of
sum to an integral gives the leading exponential term
6-13
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ln Ga,d~s!'2S s

z~a,d! D
d/a

g~a,d!, ~E14!

where

g~a,d!5E
0

`

ddu ln~11uuu2a!5
pd/211

dGS d

2D sinS pd

a D .

~E15!

Performing the inverse Laplace transformation by the sad
point method, one arrives at the small-x asymptote of the
PDF as
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05611
le

ln Pa,d~x!'2
R~a,d!

xd/(a2d)
, ~E16!

with

R~a,d!5
a2d

d F pd/211

aGS d

2D sinS pd

a D z~a,d!d/aG a/(a2d)

.

~E17!
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