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Helicoid-like precipitation structures emerging in the wake of reaction–diffusion fronts are studied
experimentally as well as theoretically. We find that the helicoids are stretched, their local pitch behind
the advancing front increases exponentially. We compare this result to the exponential increase of the
band spacing in Liesegang phenomena. The spacing coefficient (p) characterizing the exponential increase
satisfies the same Matalon–Packter law in both cases, i.e. p � 1/a0 where a0 is the initial concentration of
the outer electrolyte in the experimental setup. Our experiments also reveal that, at the microstructure
level, the helicoids are assembled from building blocks of micron-size achiral spherulites.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Helical and helicoidal structures are common architectures in
nature and in man-made systems such as inorganic crystals or
nanohelices [1–5]. The formation of these inherently chiral pat-
terns is an interesting and rather complex problem due to the sym-
metry breaking which takes place at some stage of their evolution.
In our recent work [6] we showed that emergence of helicoids and
helices in precipitation processes in the wake of a planar reaction–
diffusion front is an intrinsic property of the system and (in con-
trast to coming from initial and boundary condition effects) it
can be attributed to a sophisticated interplay among the noise,
the moving front, and the unstable modes of the precipitation
dynamics. Our findings reveal that the emergence of helicoidal
and helical patterns is reproducible with a finite, well-defined
probability depending on the parameters of the system such as
the initial concentration of the outer and inner electrolytes, the
temperature and the width of the system (see Figures 1 and 2 for
the experimental setup). Remarkably, the trends in the observed
probabilities could be reproduced by generalizing a model used
earlier for explaining Liesegang phenomena [6].

The helicoids and helices are actually closely related to Liese-
gang patterns which are precipitation patterns emerging in the
wake of reaction–diffusion fronts, but the precipitation zones are
parallel to each other. The position of the bands, their width, and
their time of appearance are well characterized for Liesegang pat-
terns [7–9]. In particular, the distance between consecutive bands
in regular Liesegang phenomenon increases as a geometrical series
and it can be characterized by the so-called spacing coefficient, p,
such that xn+1 � xn = pxn, where xn+1 and xn are the positions of
two consecutive bands measured from the initial junction point
of the electrolytes. This is the well-know spacing law which has
been the focus of a large number of studies [8–10]. It has been
shown experimentally that the spacing coefficient depends on
the initial concentrations a0 and b0 of the outer and inner electro-
lytes, as described by the following relation (Matalon–Packter law)
[11,12]:

p ¼ f b0ð Þ þ
g b0ð Þ

a0
; ð1Þ

where f and g are weakly dependent (decreasing functions) of their
arguments.

It is a natural question whether the method of characterization
of bands can be extended to helices as well, where the distance be-
tween the bands is equivalent to the local pitch of the helices. Our
aim with this letter is to suggest that the spacing law and the re-
lated Matalon–Packter law are valid for helices. This suggestion
is supported by the accord between our numerical simulations
and the experimental findings. We also examine the microstruc-
ture of precipitation helicoids in order to ascertain that the origin
of macroscopic helices is in symmetry breaking and not the chiral-
ity of the microscopic building blocks.
2. Experimental

Our experiments concerned the CuCl2 and K2CrO4 precipitation
reaction in a 1% agarose gel according to the chemical reaction
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Figure 1. Transformation of the 3D experimental setup into a 2D domain used in
numerical simulations. The unfolding of the cylinder onto the 2D domain (Lx � Ly)
requires that the boundary conditions are periodic in the horizontal direction, and
the width of the domain Ly is defined by the radius R of the cylinder: Ly = 2pR. The
single brown line (C) of helix in 3D corresponds to a set of tilted precipitation zones
(lines) joined by the periodic boundary condition. Blue and yellow colors mark the
regions where the reagents (A – outer electrolyte, B – inner electrolyte) are placed
initially. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Cu2þðaqÞ þ CrO2�
4 ðaqÞ ! CuCrO4ðsÞ [13]. Agarose gel in a test tube

contained potassium chromate as inner electrolyte was prepared
by dissolving potassium chromate (K2CrO4, Sigma–Aldrich – the in-
ner electrolyte) in double distilled water with the given amount of
agarose powder (Type I, Sigma–Aldrich). The mixture was heated
to 90 �C under constant stirring until a homogeneous solution was
obtained. The resulting solution was then poured into test tubes of
16 mm diameters. After polymerization (2 h) a solution of copper
chloride (CuCl2, Sigma–Aldrich – the outer electrolyte) was gently
poured on top of the potassium chromate-doped gel (see Figure 1
for the experimental setup). The pattern formation was monitored
at room temperature (22.0 ± 0.3 �C) by a digital camera for 7 days.
All experiments were carried out with much higher concentrations
of the outer electrolyte (CuCl2). Details of the experimental param-
eters used are described in Ref. [13]. Experimental results indicate
that both the Liesegang bands and the helicoids/helices emerge in
a wide range of the parameters. In general, we found that precipita-
tion helicoids formed with higher probability when the concentra-
tion of the outer electrolyte was higher, thus ensuring fast motion
of the front [6]. Noise (e.g., thermal) also plays a crucial role in heli-
coid formation, probability of the emergence of helicoids increases
with the amplitude of the noise. Finally, the radius of the test tube
also has the influential effect. The probability of helicoidal pattern
formation increases with the radius of the test tube. Moreover, there
is a critical radius, below which only Liesegang bands are formed
regardless of the other parameters.
3. Numerical

Models of Liesegang phenomena use various aspects of pre- and
post-nucleation dynamics. A theory that incorporates both dynam-
ics through a phase separation scenario is based on the Cahn–Hil-
liard equation [14]. This description features fast, spinodal-
decomposition type precipitation dynamics, as well as slower,
nucleation-and-growth processes [15] and it can reproduce all
the well-established laws related to Liesegang patterns (time-,
spacing-, width-, and Matalon–Packter laws) [8–12].

We use the Cahn–Hilliard dynamics combined with reaction–
diffusion equations which produce the reaction front where the
particles for the precipitation are produced. Assuming an irrevers-
ible reaction A + B ? C between the outer (A) and inner (B) electro-
lytes, the pattern formation phenomena in the gel is described by
the following reaction–diffusion equations

@ta ¼ DDa� kab ð2Þ

@tb ¼ DDb� kab ð3Þ

@tm ¼ �kD m�m3 þ rDm
� �

þ kabþ gc; ð4Þ

where k is the reaction rate and, for simplicity, the diffusion coeffi-
cients (D) of the reagents are taken to be equal. m is the shifted and
appropriately scaled concentration of the precipitating particles (C).
The front is described in terms of the spatio-temporal properties of
kab (rate of production of C’s), and k, r, gc are the rescaled kinetic
coefficient, surface tension, and conserved noise, respectively
[6,16]. During the precipitation process the C particles segregate
into low (cl: m = �1) and high (ch: m = 1) concentration states de-
scribed by Eq. (4) (for the detailed model description see Refs.
[6,16]). Eqs. (2)–(4) were solved by applying a ‘method of lines’
using spatial discretization on a rectangular grid followed by inte-
gration of the resulting ordinary differential equations by the for-
ward Euler method. The conserved noise gc was realized by
moving Cs to neighboring sites at a rate gc ¼ r

ffiffiffi
c
p

, where r is a ran-
dom number uniformly distributed in an interval [�g, g] with g
characterizing the strength of the noise. The grid spacing and the
time step were 1.0 and 0.02, respectively. We used periodic bound-
ary conditions in the y direction (see Figure 1 for the reason of peri-
odicity) and no-flux boundary conditions at the lower edge of the
gel (x = Lx, y). The boundary condition at the upper edge (x = 0, y)
for A is a Dirichlet boundary, according to the assumption that the
concentration of the outer electrolyte is kept at a constant value
aðx ¼ 0; y; tÞ ¼ a0=�c, while Neumann (no-flux) boundaries are used
for B and C. The outer electrolyte concentration (a0) was scaled by
�c ¼ ðch þ clÞ=2 in both experiments and numerical simulations. As
can be inferred from Figure 1, parallel zones and tilted lines in sim-
ulations correspond to regular Liesegang and helical patterns,
respectively. Solving the above numerical model with various initial
and external parameters allowed us to characterize the spacing
coefficient of helices and to compare these data with the experi-
mental findings.
4. Results and discussion

In our experiments, helicoidal patterns emerged in columns of
gel placed in test tubes. In this setup a planar diffusion front of
the outer electrolyte moves into the gel and, in general, produces
a series of distinct precipitation disks which is called the regular
Liesegang pattern (see Figure 2). However, using the same experi-
mental conditions, helicoidal pattern can also evolve (with well-
defined probability) showing the stochastic nature of this phenom-
enon. In order to compare the properties of regular and helicoidal
patterns, we carried out at least 10 independent experiments at the
same fixed parameters and conditions.

To investigate the Matalon–Packer law for the helicoids we
need to generalize the concept of spacing coefficients for helices.
This can be done by defining xn through the position of the nth
crossing of the helix at a given y (Figure 2), and then xn+1/xn -
� 1 = pn should converge to the spacing coefficient p for large n
(plotting xn+1 versus xn and determining the slope of fitted linear
curve). Note, that helices are often characterized by their pitch. It



Figure 2. Visual demonstration of the near equality of the spacing parameters for helicoids and for regular Liesegang bands. The patterns were grown experimentally (a) and
numerically (b) in identical circumstances. Experimentally, we used ½Cuþ2 �0 ¼ a0 ¼ 0:5 M; and ½CrO2�

4 �0 ¼ b0 ¼ 0:01 M, while the scaled parameters in numerical simulations
were a0 = 80.0, b0 = 1.0, r = 0.8, k = 0.2 and g = 0.007.

40 S. Thomas et al. / Chemical Physics Letters 577 (2013) 38–41
is clear from both the experiments and simulations (Figure 2) that
the pitch of the Liesegang helices increases as the distance from the
initial junction of the electrolytes increases. Only a local pitch qn =
xn+1 � xn can be defined which can be expressed through the spac-
ing coefficient as qn = xn+1 � xn = pxn.

Figure 3 displays the dependence of the spacing coefficient as a
function of a0=�c for both bands and helices obtained in experi-
ments as well as in simulations [6]. The experimental results for
Figure 3. Dependence of the spacing coefficient, p, on the scaled initial concentra-
tion of the outer electrolyte, a0=�c (copper chloride in experiments). The lines
represent the fitted function p = c + d/a0 showing that the Matalon–Packter law is
equally valid for precipitation bands and helices.
helices and bands are close to each other with the helices having
slightly larger spacing coefficients. Since the data for both the reg-
ular bands and helices follow the same curves and can be fitted
well to the form of Eq. (1), we conclude that not only the band
spacing but also the local helical pitch follows the Matalon–Packter
law. As to the simulations, we can select parameter values so that
the spacing coefficients are roughly equal to the experimental val-
ues, but due to the low probability for the emergence of helices we
could not explore the small a0=�c range. Nevertheless, in the avail-
able interval ð20 < a0=�c < 80Þ the simulation results can be well
fitted to the Matalon–Packter law.

An observed feature of both the simulations and the experi-
ments is that the local pitch of the helices is always slightly larger
than the local band spacing of the Liesegang patterns obtained
with the same setup. The difference can be explained if we assume
that the bands and the helices have the same local concentrations
of the precipitate and the same local widths. Indeed, since the front
leaves behind a constant concentration of C’s [12] which are col-
lected into a band or a helix (tilted band), it follows that the
amount of precipitate in a band (see the green band in Figure 1)
is always smaller than that in the corresponding part of the helix
(see tilted blue band in Figure 1). Thus, it can be concluded that
the pitch of the helix must be larger than the band spacing in order
to collect the same amount of C’s.

Finally, we mention an additional outcome of our experiments
related to the origins of formation of helicoidal structures. The pat-
tern formation process may proceed along two routes. First a tem-
plate may transcribe a micro- or mesoscopic originally helical
structure (e.g., agrogel fibers) onto new structure at higher level
(e.g., inorganic crystal) [17]. A distinct possibility, however, is the
symmetry breaking route where building blocks having no



Figure 4. SEM micrograph (a) and the EDS spectrum (b) of the copper chromate
microcrystals from a precipitation helicoid in a 1% agarose gel. The building blocks
are spherulites showing no chirality at this microscopic level.
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chirality self-organize into highly ordered right- and left-handed
helical/helicoidal structures [2,18]. The usual argument for emer-
gence of crystals with chiral morphology at micrometer scale is a
twisted assembly of achiral blocks driven by mass transport. In
these structures the diameter of the helices is comparable to the
size of the achiral building blocks [2,18]. We used SEM to investi-
gate the microstructure (building blocks) of helical patterns, and
we found that the precipitation helicoid consists of monodisperse
spherulite-like particles of �1 lm size (Figure 4). These building
blocks appear to be achiral, thus we believe, the macroscopic helic-
oids, which have four orders of magnitude larger size, emerged as a
result of symmetry breaking, and not as a result of the microscopic
chirality magnified to the macroscopic level.

5. Conclusions

The main aim of this study was to investigate dependence of
spacing coefficient of helicoidal and helical patterns on the initial
concentration of the outer electrolytes in a precipitation system.
Based on experimental and numerical results we were able to
quantify this dependence, and we could conclude that the Mat-
alon–Packter law is valid for precipitation helicoids as well. We
found that such chiral precipitation helicoids are made of building
blocks of achiral crystallites of 1 lm size. We believe that under-
standing of helicoidal and helical patterns in reaction–diffusion
systems is important since it may help in designing and engineer-
ing similar helicoidal and helical structures in other chemical and
physical systems (e.g., frontal polymerization, alloy systems),
which could have unique physical and chemical properties.
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