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Arguments presented in the lectures suggest that the form of the amplitude equation is rather
general. Here we show by detailed analysis that, near its instability point, the Swift-Hohenberg
model indeed yields the general form of the amplitude equation.

I. THE MODEL EQUATION

The Swift-Hohenberg model [1] is specially chosen to
make the calculation of the amplitude equation as sim-
ple as possible (its origin is in hydrodynamics but es-
tablishing the link is not straightforward). The system
is described by a scalar field u(x, t) whose dynamics for
the one dimensional case is given by the so called Swift-
Hohenberg (SH) equation:

∂tu = εu − (∂2

x + k2

c )2u − u3 . (1)

Here ε is the control parameter while, as shown by the
linear stability analysis, kc is the critical wave number.

II. LINEAR STABILITY ANALYSIS

It is easy to see that u∗ = 0 is a homogeneous, sta-
tionary solution of the equation. Linearizing around this
solution means that the u3 term is dropped from the
equation. The spatial Fourier transform of the linearized
equation gives us the following solution for the Fourier
components of u(x, t) =

∫

eikxuk(t)dk

uk(t) = uk(0)eωkt , (2)

where the characteristic frequencies determining the sta-
bility are given by

ωk = ε − (k2 − k2

c )2 . (3)

One can see that the system becomes unstable for ε ≥ 0
and, indeed, the characteristic wavenumber of the emerg-
ing pattern at εc = 0 should be kc.

III. PERTURBATIONS FOR SMALL ε

For small ε, as discussed in the main part of the lecture
notes, the characteristic length-scales and time-scales are
given by 1/

√
ε and 1/ε, respectively. Thus we are seeking

the solution of eq.(1) in the form

u(x, t) ≈ eikcxA(ε1/2x, εt) (4)

or, more precisely, we make the following expansion in
powers of ε1/2 (remember that we showed that A ∼ ε1/2

in the main part of the notes)

u(x, t) = ε1/2 A0(X,T )Φ(x) + (5)

ε B0(X,T ) Ψ(x) + (6)

ε3/2 C0(X,T ) ζ(x) . (7)

where

X = ε1/2x and T = εt . (8)

The task now is to substitute the above expansion into
eq.(1) and collect the terms proportional to ε1/2, ε, up
to ε3/2. It is not by chance that we expand up to ε3/2,
the amplitude equation emerges only at this order.

The calculations are somewhat simplified if we note
that the terms in u(x, t) consist of the product of two
functions with one of them depending on x while the
other one on X and T . This means that we can replace
the derivatives by

∂t → ε∂T ; ∂x → ∂x + ε1/2∂X . (9)

IV. ORDER OF THE TERMS IN THE SH

EQUATION

The left-hand side of eq.(1) is already of the order ε3/2:

∂tu → ε3/2∂T A0 Φ . (10)

The same is true about the 1st and 3rd terms on the
right-hand side

εu → ε3/2A0 Φ , −u3 → −ε3/2(A0 Φ)3 (11)

The complicated piece comes from the spatial derivatives.

−(∂2

x + k2

c )2u = −
[

(∂x + ε1/2∂X)2 + k2

c

]2

u . (12)

Since u is at least of the order ε1/2, the bracket [ ]2

must be expanded up to order ε:

[ ]2 =
[

∂2

x + k2

c + 2ε1/2∂x∂X + ε∂2

X

]2

(13)

=
[

L + 2ε1/2∂x∂X + ε∂2

X

]2

(14)

= L2 + 4ε1/2L∂x∂X + 4ε∂2

x∂2

X + 2εL∂2

X (15)

where we introduced the operator

L = ∂2

x + k2

c . (16)
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The [ ]2u term produces various orders in ε1/2 and, re-
placing u by its expansion, we obtain

[ ]
2
u = ε1/2A0L2Φ + ε

[

4∂XA0L∂xΦ + B0L2Ψ
]

+

(17)

ε3/2
[

4∂2

XA0∂
2

xΦ + 2∂2

XA0LΦ + 4∂XB0L∂xΨ + C0L2ζ
]

Collecting now the terms from eqs.(10,11,17), we can
analyse them order by order of the power of ε1/2.

V. ORDERS ε
1/2

AND ε

The order ε1/2 equation is simple

A0L2Φ = A0(∂
2

x + k2

c )2Φ = 0 . (18)

Its periodic solution, taking into account that A0Φ should
be real, is given by

A0Φ = Ã0e
ikcx + Ã∗

0
e−ikcx . (19)

Note that Ã0 is not determined at this order, it is just
an integration constant in solving eq.(18).

At order ε, one finds

4∂XA0L∂xΦ + B0L2Ψ = 0 . (20)

Since LΦ = 0, the above equation reduces to

B0L2Ψ = 0 (21)

and so, to order ε, the SH equation is solved by

B0Ψ = B̃0e
ikcx + B̃∗

0
e−ikcx . (22)

where B̃0 is again an integration constant undetermined
at this stage.

VI. ORDER ε
3/2

This is the first nontrivial order. Collecting the ε3/2

terms from eqs.(10,11,17), we find

Φ∂T A0 = ΦA0 − (ΦA0)
3 − 4∂2

XA0∂
2

xΦ (23)

− 2∂2

XA0LΦ − 4∂XB0L∂xΨ − C0L2ζ

Since according to eqs.(18) and (21), we have LΦ = 0
and LΨ = 0, the underlined terms in eq.(23) disappear.

It follows from eq.(19) that ∂2

xΦ = −k2

cΦ and thus, the
3rd term on the right hand side eq.(23) simplifies to

−4∂2

XA0∂
2

xΦ = 4k2

cΦ∂2

XA0 . (24)

Furthermore, the cubic term can be written as

(ΦA0)
3 = e3ikxÃ 3

0
+ e−3ikxÃ∗ 3

0
+

3 (eikxÃ0 + e−ikxÃ∗

0
) |Ã0|2 . (25)

Note now that all the terms examined so far were pro-
portional either to eikcx or e−ikcx. The cubic term, how-
ever, yield terms ∼ e±3ikcx which must be cancelled by
the only term left, C0L2ζ. But the C0L2ζ term cannot
contain terms ∼ e±ikcx. Indeed, if ζ would contain e±ikcx

terms then they would be annihilated by the operator L.

Thus collecting separately the terms ∼ e±ikcx and ∼
e±3ikcx in eq.(23), one finds the following two equations

Φ∂T A0 = ΦA0 − 3 |Ã0|2ΦA0 + 4k2

cΦ∂2

XA0 (26)

0 = −e3ikxÃ 3

0
+ e−3ikxÃ∗ 3

0
− C0L2ζ . (27)

Eq.(27) determines ζ and, since it gives an ε3/2 contribu-
tion to the amplitude, we shall not consider it any more.
Eq.(26) can be written as two equations by separating
the terms ∼ e±ikcx. These equations are each other’s
complex conjugates, thus it is sufficient to write out one
of them

∂T Ã0 = Ã0 − 3 |Ã0|2 Ã0 + 4k2

c ∂2

XÃ0 . (28)

Returning to variables T = tε and X = xε1/2, one finds

∂tÃ0 = εÃ0 − 3ε |Ã0|2 Ã0 + 4k2

c ∂2

XÃ0 . (29)

Making additional scale-changes in x and absorbing the
ε1/2 scale into Ã0:

x → 2kcx ; A = (3ε)1/2Ã0 , (30)

we arrive at the standard from of the amplitude equation

∂tA = εA − |A|2 A + ∂2

xA . (31)

The analysis of this equation can be found in the main
line of the lecture notes.
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