1.2.1 Brownian Motion From C.W. Gardiner: Handbook of Stochastic Methods

The observation that, when suspended in water, small pollen grains are found to
be in a very animated and irregular state of motion, was first systematically
investigated by Robert Brown in 1827, and the observed phenomenon took the
name Brownian Motion because of his fundamental pioneering work. Brown was
a botanist—indeed a very famous botanist—and of course tested whether this
motion was in some way a manifestation of life. By showing that the motion was
present in any suspension of fine particles—glass, minerals and even a fragment of
the sphinx—he ruled out any specifically organic origin of this motion. The motion
is illustrated in Fig. 1.2.

Fig. 1.2. Motion of a point undergoing Brownian
motion

The riddle of Brownian motion was not quickly solved, and a satisfactory
explanation did not come until 1905, when Einstein published an explanation under
the rather modest title “iiber die von der molekular-kinetischen Theorie der
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Wirme geforderte Bewegung von in ruhenden Fliissigkeiten suspendierten Teil-
chen” (concerning the motion, as required by the molecular-kinetic theory of heat,
of particles suspended in liquids at rest) [1.2]. The same explanation was indepen-
dently developed by Smoluchowski [1.3], who was responsible for much of the later
systematic development and for much of the experimental verification of Brownian
motion theory.

There were two major points in Einstein’s solution to the problem of Brownian
motion.

(1) The motion is caused by the exceedingly frequent impacts on the pollen grain of
the incessantly moving molecules of liquid in which it is suspended.

(ii) The motion of these molecules is so complicated that its effect on the pollen
grain can only be described probabilistically in terms of exceedingly frequent
statistically independent impacts.

The existence of fluctuations like these ones calls out for a statistical explanation
of this kind of phenomenon. Statistics had already been used by Maxwell and
Boltzmann in their famous gas theories, but only as a description of possible states
and the likelihood of their achievement and not as an intrinsic part of the time
evolution of the system. Rayleigh [1.1] was in fact the first to consider a statistical
description in this context, but for one reason or another, very little arose out of
his work. For practical purposes, Einstein’s explanation of the nature of Brownian
motion must be regarded as the beginning of stochastic modelling of natural
phenomena.

Einstein’s reasoning is very clear and elegant. It contains all the basic concepts
which will make up the subject matter of this book. Rather than paraphrase a classic
piece of work, I shall simply give an extended excerpt from Einstein’s paper (author’s
translation):

“It must clearly be assumed that each individual particle executes a motion
which is independent of the motions of all other particles; it will also be considered
that the movements of one and the same particle in different time intervals are
independent processes, as long as these time intervals are not chosen too small.

“We introduce a time interval 7 into consideration, which is very small com-
pared to the observable time intervals, but nevertheless so large that in two succes-
sive time intervals 7, the motions executed by the particle can be thought of as
events which are independent of each other.

“Now let there be a total of n particles suspended in a liquid. In a time interval
7. the X-coordinates of the individual particles will increase by an amount 4, where
for each particle 4 has a different (positive or negative) value. There will be a
certain frequency law for 4; the number dn of the particles which experience a
shift which is between 4 and 4 + d4 will be expressible by an equation of the form

dn = ng(4)dd, (1.2.1)

where

J é(d)da = 1 (1.2.2)
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and ¢ is only different from zero for very small values of 4, and satisifes the condi-
tion

#(4) = ¢(—4). (1.2.3)

“We now investigate how the diffusion coefficient depends on ¢. We shall once
more restrict ourselves to the case where the number v of particles per unit volume
depends only on x and .

“Let v = f(x, t) be the number of particles per unit volume. We compute the
distribution of particles at the time ¢ + 7 from the distribution at time 7. From the
definition of the function g(4), it is easy to find the number of particles which at
time ¢ + 7 are found between two planes perpendicular to the x-axis and passing
through points x and x + dx. One obtains

fe, t + Odx = dx | fix + 4, Ng(d)d4 . (1.2.4)
But since 7 is very small; we can set
of
fo, t+1)=f(x1)+ T (1.2.5)
Furthermore, we develop f(x + 4, t) in powers of 4:

fx+ 4,8)=f(x, 1) + Aaf(g; D4 g; azfg; . - (1.2.6)

We can use this series under the integral, because only small values of 4 contribute
to this equation. We obtain

p4 Loy | s+ LT sparia+ 5T 5 saa. (12.7)

Because g(x) = ¢(-x), the second, fourth, etc., terms on the right-hand side vanish,
while out of the Ist, 3rd, 5th, etc., terms, each one is very small compared with the
previous. We obtain from this equation, by taking into consideration

o

[ g(d)da =1 (1.2.8)

—co

and setting

B ];%z #d)dd =D, (1.2.9)

and keeping only the Ist and third terms of the right-hand side,

9 o
bf;=pa_){;.... (1.2.10)
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This is already known as the differential equation of diffusion and it can be seen that
D is the diffusion coefficient. ...

“The problem, which corresponds to the problem of diffusion from a single
point (neglecting the interaction between the diffusing particles), is now com-
pletely determined mathematically: its solution is

n e—-x2/4Dt

f(x,t)=«/E5\/T

(1.2.11)

“We now calculate, with the help of this equation, the displacement A, in the
direction of the X-axis that a particle experiences on the average or, more exactly,
the square root of the arithmetic mean of the square of the displacement in the
direction of the X-axis; it is

M= /%2 = /2Dt .” (1.2:12)

Einstein’s derivation is really based on a discrete time assumption, that impacts
happen only at times 0, 7, 27, 37 ..., and his resulting equation (1.2.10) for the
distribution function f(x, ¢) and its solution (1.2.11) are to be regarded as approxi-
mations, in which 7 is considered so small that ¢ may be considered as being
continuous. Nevertheless, his description contains very many of the major concepts
which have been developed more and more generally and rigorously since then,
and which will be central to this book. For example:

1) The Chapman-Kolmogorov Equation occurs as Einstein’s equation (1.2.4). It
states that the probability of the particle being at point x at time ¢ + 7 is given by
the sum of the probability of all possible “pushes” 4 from positions x + 4, multi-
plied by the probability of being at x + 4 at time ¢. This assumption is based on
the independence of the push 4 of any previous history of the motion: it is only
necessary to know the initial position of the particle at time #—not at any previous
time. This is the Markov postulate and the Chapman Kolmogorov equation, of
which (1.2.4) is a special form, is the central dynamical equation to all Markov
processes. These will be studied in detail in Chap. 3.

i1) The Fokker-Planck Equation: Eq. (1.2.10) is the diffusion equation, a special case
of the Fokker-Planck equation, which describes a large class of very interesting
stochastic processes in which the system has a continuous sample path. In this case,
that means that the pollen grain’s position, if thought of as obeying a probabilistic
law given by solving the diffusion equation (1.2.10), in which time 7 is continuous
(not discrete, as assumed by Einstein), can be written x(¢), where x(¢) is a continuous
Jfunction of time-but a random function. This leads us to consider the possibility of
describing the dynamics of the system in some direct probabilistic way, so that we
would have a random or stochastic differential equation for the path. This procedure
was initiated by Langevin with the famous equation that to this day bears his name.
We will discuss this in detail in Chap. 4.

iii) The Kramers-Moyal and similar expansions are essentially the same as that
used by Einstein to go from (1.2.4) (the Chapman-Kolmogorov equation) to the
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diffusion equation (1.2.10). The use of this type of approximation, which effectively
replaces a process whose sample paths need not be continuous with one whose
paths are continuous, has been a topic of discussion in the last decade. Its use
and validity will be discussed in Chap. 7.

1.2.2 Langevin’s Equation

Some time after Einstein’s original derivation, Langevin [1.4] presented a new
method which was quite different from Einstein’s and, according to him, “infinitely

more simple.” His reasoning was as follows.
From statistical mechanics, it was known that the mean kinetic energy of the

Brownian particle should, in equilibrium, reach a value
Gmvry = LkT (1.2.13)

(T; absolute temperature, k; Boltzmann’s constant). (Both Einstein and Smolucho-
wski had used this fact). Acting on the particle, of mass m there should be two
forces:

i) a viscous drag: assuming this is given by the same formula as in macroscopic
hydrodynamics, this is —6mnya dx/dt, n being the viscosity and a the diameter of
the particle, assumed spherical.

ii) another fluctuating force X which represents the incessant impacts of the
molecules of the liquid on the Brownian particle. All that is known about it is that
fact, and that it should be positive and negative with equal probability. Thus, the
equation of motion for the position of the particle is given by Newton’s law as

2
m‘(lltz— —6mn a‘:; + X (1.2.14)

and multiplying by x, this can be written
2
%%(x’) — vt = —-3myad(x ) + Xx (1.2.15)

where v = dx/dt. We now average over a large number of different particles and use
(1.2.13) to obtain an equation for {x?):

m d*{x*

2
2l d<"> — kT, (1.2.16)

+ 3nna ——=

where the term (xX) has been set equal to zero because (to quote Langevin) “of
the irregularity of the quantity X”. One then finds the general solution

dij‘? — kT|(3nna) + C exp (—6nnatjm), 1.2.17)
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where C is an arbitrary constant. Langevin estimated that the decaying exponential
approaches zero with a time constant of the order of 107% s, which for any practical
observation at that time, was essentially immediately. Thus, for practical purposes,
we can neglect this term and integrate once more to get

x%) — (xg) = [kT|(3nna)lt . (1.2.18)
This corresponds to (1.2.12) as deduced by Einstein, provided we identify
D = kT|/(6mna) , (1.2.19)

a result which Einstein derived in the same paper but by independent means.

Langevin’s equation was the first example of the stochastic differential equation—
a differential equation with a random term X and hence whose solution is, in some
sense, a random function. Each solution of Langevin’s equation represents a
different random trajectory and, using only rather simple properties of X (his
fluctuating force), measurable results can be derived.

One question arises: Einstein explicitly required that (on a sufficiently large time
scale) the change 4 be completely independent of the preceding value of 4. Lange-
vin did not mention such a concept explicitly, but it is there, implicitly, when one
sets (Xx) equal to zero. The concept that X is extremely irregular and (which is not
mentioned by Langevin, but is implicit) that X and x are independent of each
other—that the irregularities in x as a function of time, do not somehow conspire
to be always in the same direction as those of X, so that the product could possibly
not be set equal to zero; these are really equivalent to Einstein’s independence
assumption. The method of Langevin equations is clearly very much more direct,
at least at first glance, and gives a very natural way of generalising a dynamical
equation to a probabilistic equation. An adequate mathematical grounding for
the approach of Langevin, however, was not available until more than 40 years
later, when Ito formulated his concepts of stochastic differential equations. And
in this formulation, a precise statement of the independence of X and x led to the
calculus of stochastic differentials, which now bears his name and which will be
fully developed in Chap. 4.

As a physical subject, Brownian motion had its heyday in the first two decades
of this century, when Smoluchowski in particular, and many others carried out
extensive theoretical and experimental investigations, which showed complete agree-
ment with the original formulation of the subject as initiated by himself and
Einstein, see [1.5]. More recently, with the development of laser light scattering
spectroscopy, Brownian motion has become very much more quantitatively
measurable. The technique is to shine intense, coherent laser light into a small
volume of liquid containing Brownian particles, and to study the fluctuations in the
intensity of the scattered light, which are directly related to the motions of the
Brownian particles. By these means it is possible to observe Brownian motion of
much smaller particles than the traditional pollen, and to derive useful data about
the sizes of viruses and macromolecules. With the preparation of more concentrated
suspensions, interactions between the particles appear, generating interesting and
quite complex problems related to macromolecular suspensions and colloids [1.6].






