(1) 100 pt .

Consider the extreme value distribution $P\left(z_{N}\right)$ of the largest $z_{N}=\max \left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ obtained from N independent draws in the $[0, \infty]$ interval using the parent distributions

$$
\begin{equation*}
P_{0}(y)=\frac{e^{-\sqrt{y}}}{2 \sqrt{y}} \quad(\mathrm{~A}) \quad, \quad P_{0}(y)=\frac{3}{2} \sqrt{y} e^{-y^{3 / 2}} \quad(\mathrm{~B}) \tag{1}
\end{equation*}
$$

where $\mathrm{A}=$ Bendegúz and $\mathrm{B}=$ Lénárd. As one can easily show, the functions $P_{0}(y)$ are normalized in the $[0, \infty]$ interval.

We know that, for the given parent distributions (exponential decay), using appropriate shift and scaling, the limit distribution is the Gumbel distribution

$$
\begin{equation*}
\lim _{N \rightarrow \infty} P\left(z_{N}=a_{N} x+b_{N}\right)=P_{G}(x)=\frac{\pi}{\sqrt{6}} \exp \left[-\frac{\pi}{\sqrt{6}} x-\gamma_{E}-e^{-\frac{\pi}{\sqrt{6}} x-\gamma_{E}}\right] \tag{2}
\end{equation*}
$$

where we used the standardization $\langle x\rangle=0,\left\langle x^{2}\right\rangle=1$ for the limit distribution and γ_{E} is the Euler constant.
We also know that, for finite N, there are corrections to the above results:

$$
\begin{equation*}
P\left(z_{N}=a_{N} x+b_{N}\right)=P(x, N) \approx P_{G}(x)+q(N) \Phi(x) \tag{3}
\end{equation*}
$$

where one expects that $q(N \rightarrow \infty) \rightarrow 0$ and $\Phi(x)$ is called the shape correction.
Tasks:
(i) Carry out simulations of finding z_{N} out of N draws from the parent distribution $P_{0}(y)$ and build the extreme value distributions for various N-s.
(ii) Use the standardization

$$
\begin{equation*}
\langle x\rangle=0, \quad\left\langle x^{2}\right\rangle=1 \quad \rightarrow \quad x=\frac{z_{N}-\left\langle z_{N}\right\rangle}{\sigma}, \quad \sigma=\sqrt{\left\langle z_{N}^{2}\right\rangle-\left\langle z_{N}\right\rangle^{2}} \tag{4}
\end{equation*}
$$

to build the distribution function $P(x, N)$.
(iii) Analyse the simulation data by plotting

$$
\begin{equation*}
\frac{1}{q(N)}\left[P(x, N)-P_{G}(x)\right] \quad \text { vs. } \quad x \tag{5}
\end{equation*}
$$

Find a functional form of $q(N)$ which results in a collapse of data for various N. Compare the resulting shape correction to the ones displayed in the lecture notes for the cases of exponential and Gaussian parents.

