(1) 50 pt .

The statistics of extremes are related to the statistics of reaching, for the first time, a threshold value z for a continously changing variable $x(t)$. The solution of the problem below demonstrates this for the case of a random walker.

Let $x(t)$ be the coordinate of a particle which executes a one-dimensional random walk starting from $x(0)=x_{0}$. The probability $P(x, t)$ that the position of the particle at time t is x satisfies the diffusion equation with some diffusion constant D

$$
\begin{equation*}
\partial_{t} P(x, t)=D \partial_{x}^{2} P(x, t) \quad, \quad P(x, 0)=\delta\left(x-x_{0}\right) \tag{1}
\end{equation*}
$$

When interested in x reaching a treshold value z, one calculates the so called first passage time probability $\hat{\mathbf{P}}\left(z, t \mid x_{0}, 0\right) d t$. It is defined as the probability that the random walker, starting from x_{0} at time $t=0$ passes the $x=z$ value for the first time between t and $t+d t$.

In order to find $\hat{\mathbf{P}}\left(z, t \mid x_{0}, 0\right)$, one can turn to the notes "online additions to Lecture 8 " where we calculated the integrated probability, $M\left(x<z \mid x_{0} ; t\right)$, that the random walker, starting from x_{0}, stayed below $x<z$ up to time t. One should see that $M\left(x<z \mid x_{0} ; t\right)$ is nothing else but 1 minus the probability that the random walker crossed the $x=z$ threshold sometimes in the time interval $[0, t]$. This means that $M\left(x<z \mid x_{0} ; t\right)$ can be expressed through $\hat{\mathbf{P}}\left(z, t \mid x_{0}, 0\right)$ as

$$
\begin{equation*}
M\left(x<z \mid x_{0} ; t\right)=1-\int_{0}^{t} \hat{\mathbf{P}}\left(z, \tau \mid x_{0}, 0\right) d \tau \tag{2}
\end{equation*}
$$

Use the above equation to calculate the first passage probability $\hat{\mathbf{P}}\left(z, t \mid x_{0}, 0\right) d t$.

