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I. INTRODUCTION

As we saw on the example of random energy model,
extrem value statistics (EVS) gives us the distribution of
the minimum energy Emin. The exponential distribution
of Emin we obtained is an interesting results but to arrive
at measurable quantities such as e.g. heat capacity at
low temperatures, we would need the value of the first
excited state as well or, in general, the density of states
just above Emin.

In EVS the above problem is formulated as a ques-
tion: How lonely is it at the top? Another version of the
question: How crowded is it at the top?

The problem of crowding near extreme values comes
up not only in physical problems such as the random
energy model. Other examples are:

• Insurance: In addition to the value of largest losses,
the knowledge about the number of near extreme
losses is also crucial.

• Climate: The number of near extreme hurricanes
are as important as the strength of the largest one.

• Astrophysics: The value of using the brightest
galaxies as standard candles depends essentially on
the brightness gap between the brightest and sec-
ond brightest.

• Optimalization: Finding the exact optimum is im-
possible in many practical problems. One would
like to know how many near optimal solutions ex-
ists and how close are they expected to be to the
exact optimum.

In the following, first we shall calculate the gap be-
tween the largest and second largest for independent,
identically distributed (i.i.d.) variables. Then we shall
extend the calculation to the density of states near the
maximum.

II. GAP BETWEEN THE LARGEST AND

SECOND LARGEST: I.I.D. VARIABLES

A. General considerations

We have already calculated the distribution P1(x) of
the largest value in scaled variable x which is related to
the original variable z through

z = aNx + bN (1)

where the coefficients aN and bN depend on the parent
distribution and on the batch size N . Let’s assume that
we also know the distribution of the second larges P2(x)
in the same scaling variable. Then the average distance
between the largest and second largest ∆1,2 in the scaled
variable is given by

∆1,2(γ) = 〈x1〉 − 〈x2〉 =

∫

yP1(y)dy −
∫

yP2(y)dy (2)

where γ is explicitely written in ∆1,2(γ) in order to indi-
cate the expected dependence on the parameter γ speci-
fying the EVS limit distribution.

In the original variable z, we have from (1)

〈z1〉 − 〈z2〉 = aN (〈x1〉 − 〈x2〉) = aN∆1,2(γ) . (3)

Since ∆1,2(γ) is expected to be a finite number, we see
that whether the gap increases, decreases, or stays finite
in the N → ∞ limit is determined by the factor aN .

Thus, the gap is finite for an exponential parent dis-
tribution (aN ∼ const), it goes to zero for a Gaussian

parent (aN ∼ 1/
√

lnN), and it diverges for a power-law
parent (aN ∼ N1/α).

B. Calculation of the second largest

Let the parent distribution in the original variable y
be p(y), and denote by µ(z) =

∫ z

−∞
p(y)dy the integrated

distribution giving the probability that y < z. Then the
probability, P2(z)dz, that the second largest is between
z and z + dz is given by

P2(z)dz = N(N − 1)µ(z)N−2p(z)dz[1 − µ(z)] . (4)

Here 1− µ(z) is the probability that a selected measure-
ment is above z, p(z)dz is that one measurement is be-
tween z and z + dz while µ(z)N−2 is the probability that
the rest of the N − 2 measurements is below z. The fac-
tor N(N − 1) is coming from combinatorics [note that
the measurements are distinguishable and so, there is no
factor 2 dividing N(N − 1)].

Thus we have

P2(z) = N(N − 1)µ(z)N−2p(z)[1 − µ(z)] . (5)

and we can also find the integrated probability distribu-
tion M2(z) for the second largest

M2(z) = Nµ(z)N−1 − (N − 1)µ(z)N . (6)



2

In order to make the appropriate change of variables z =
aNx + bN , it is convenient to write M2(z) as

M2(z) = µ(z)N

[

1 + N
1 − µ(z)

µ(z)

]

. (7)

We know that µ(z)N = M1(z) and, as a result of the
change of variable z = aNx + bN , we shall have

µ(aNx + bN )N → µ(x)N = M1(x)

= exp[−(1 + γx)−1/γ ] . (8)

The above form can also be used to write

µ(x) = exp[−(1 + γx)−1/γ/N ] . (9)

Substituting the above expression into (7) and expanding
in 1/N one obtains in the N → ∞ limit

M2(x) = M1(x)[1 + (1 + γx)−1/γ ] . (10)

Taking now the derivative by x gives us P2(x)

P2(x) = (1 + γx)−2/γ−1 exp[−(1 + γx)−1/γ ] (11)

The calculation of 〈x2〉 is simplified if we use another
form of P2(x). Namely, let us write (10) in the following
form

M2(x) = M1(x) + (1 + γx)P1(x) . (12)

Taking the derivative by x yields now

P2(x) = (1 + γ)P1(x) + (1 + γx)P ′

1(x) (13)

and this form can be used to calculate 〈x2〉 as follows

〈x2〉 =

∫

∞

−∞

xP2(x)dx = (1 − γ)〈x1〉 − 1 . (14)

Using the above form, we find the gap in the scaled vari-
able

∆1,2(γ) = 〈x1〉 − 〈x2〉 = γ〈x1〉 + 1 (15)

where the γ-dependence is not only what we see ex-
plicitely, it is also through the γ-dependence of the aver-
age 〈x1〉.

For the original variable z, eq.(15) yields our final re-
sult

〈z1〉 − 〈z2〉 = aN (γ〈x1〉 + 1) . (16)

C. Gaps for various γ-s

For γ > 0, we have the Frechet distribution and aN ∼
Nγ . Thus the distance between the largest and second
largest diverges in the N → ∞ limit.

The γ = 0 case (Fisher-Tippett-Gumber distribution)
is special since the gap is just ∆1,2 = aN . Considering
the frequently arising parent

p(y) ∼ exp (−yδ) (17)

one has

aN ∼ [lnN ]−1+1/δ (18)

and thus the limitig gap depends on δ

〈z1〉 − 〈z2〉 =







∞ for δ < 1 ,
finite 6= 0 for δ = 1 ,
0 for δ > 1 .

(19)

We note here that the above result remains valid for a
more general class of parents frequently seen in physics:
p(y) ∼ exp (−yδ)/yα.

Finally, we consider parents which have an upper
threshold at a, and the parent approaches the thresh-
old as p(y) ∼ (a− y)β . Then the limit distribution is the
Weibull distribution, and the change of variable is given
by z = aNx + a with aN ∼ N−1/(β+1). Thus, not very
surprisingly, the gap goes to zero in the N → ∞ limit.

III. DENSITY OF STATES NEAR THE

MAXIMUM

The density of states near the minimum energy is
needed e.g. if we would like to calculate the heat ca-
pacity of a system at low temperatures. The frequency
(or density) of near maximum values is also important in
general problems of EVS.

Definition of density of observed values at a distance r
from the maximum is as follows:

ρ(r,N) =
1

N

N−1
∑

i=1

δ(r − (ymax − yi)) (20)

where N is the number of draws (batch size) from a par-
ent distribution p(y) and ymax is the maximum for a
given batch of draws ymax = max{y1, y2, ..., yN}. Note
that the maximum is not counted in the the sum (20),
this is why it is only over N − 1 values.

We shall be interested in the average density

〈ρ(r,N)〉 =
1

N

N−1
∑

i=1

〈δ(r − (ymax − yi))〉 (21)

where the averaging 〈...〉 means that a large number of
batches of N values of ys is prepared, the maximum ymax

is determined in each of the batches, and r is measured
from ymax in the given batch and, finally, the values r =
ymax − yi are averaged over the batches.

Since the number of nonmaximal y values is N −1, the
integral of 〈ρ(r,N)〉 is given by

∫

∞

0

dr〈ρ(r,N)〉 = 1 − 1

N
. (22)



3

In order to calculate 〈ρ(r,N)〉, let us remember that
the distribution of the maximum value of ymax is given
through the parent distribution as

P (ymax = z,N) ≡ Pmax(z,N) = Np(z)µ(z)N−1 (23)

where µ(z) is the integrated parent distribution

µ(z) =

∫ z

−∞

dyp(y) . (24)

We can express 〈ρ(r,N)〉 through Pmax(z,N) and the
conditional density of state 〈ρc(r, z,N)〉 defined as the
density of state at a fixed z value of ymax. Indeed,
〈ρ(r,N)〉 is just an average over the position of the max-
imum

〈ρ(r,N)〉 =

∫

∞

−∞

dz〈ρc(r, z,N)〉Pmax(z,N) . (25)

In order to calculate the conditional density
〈ρc(r, z,N)〉, we should find the conditional probability
of N − 1 draws all being smaller than z (the largest
y1 < z, y2 < z, ..., yN−1 < z in the batch). This con-
ditional probabilty is given by

Pcond(y1, y2, ..., yN−1) = (26)

p(y1)
∫ z

−∞
dy1p(y1)

p(y2)
∫ z

−∞
dy2p(y2)

...
p(yN−1)

∫ z

−∞
dyN−1p(yN−1)

.

Now, the conditional density is obtained as

〈ρc(r, z,N)〉 = (27)
∫

∞

−∞

dy1...

∫

∞

−∞

dyN−1ρ(r,N)Pcond(y1, ..., yN−1)

and substituting the expressions (20) and (26) in the
above integral, we obtain

〈ρc(r, z,N)〉 =
N − 1

N

p(z − r)
∫ z

−∞
dyp(y)

=
N − 1

N

p(z − r)

µ(z)
.

(28)
We can now evaluate 〈ρ(r,N)〉 by substituting (23) and

(28) into (25)

〈ρ(r,N)〉 =

∫

∞

−∞

dz
N − 1

N

p(z − r)

µ(z)
Np(z)µ(z)N−2 (29)

and obtain our final result

〈ρ(r,N)〉 =

∫

∞

−∞

dzp(z − r)Pmax(z,N − 1) (30)

where we have used the equality (N − 1)p(z)µ(z)N−1 =
Pmax(z,N − 1).

In the following, we shall analyse the above expression
in the large N limit (N → ∞). We know that making
the appropriate change of variables

z = aNx + bN , (31)

the distribution of the maximum approaches a limit dis-
tribution

lim
N→∞

Pmax(z = aNx + bN , N)dz → P (x)dx (32)

where P (x) is a one-parameter family of distributions

P (x) = (1 + γx)−1/γ−1 exp[−(1 + γx)−1/γ ] (33)

with γ depending on the parent distribution, as discussed
earlier.

The change of variables (31) suggests the same change
of variables in the integral (30) thus yielding the following
expression for 〈ρ(r,N)〉 in the the large N limit

〈ρ(r,N)〉 =

∫

∞

−∞

dx p(aNx + bN − r)P (x) (34)

We have arrived to a form that is convenient to analyse
in terms of some general properties of EVS. This is what
we shall do in the rest of this lecture.

A. aN → 0 (γ < 0)

In the Weibull class (γ < 0), one has an upper limit
(y ≤ a) for the parent distribution. The maximum con-
verges to a and the change of variable (31) is of the form
z = aNx− a where it is obvious from the convergence to
a that aN → 0 for N → ∞. Thus, the x-dependence in
p(aNx + bN − r) disappears and we have

〈ρ(r,N)〉 = p(a − r) (35)

where the normalization of P (x) (
∫

∞

−∞
dxP (x) = 1) was

used.
The 〈ρ(r,N)〉 = p(a−r) result is understandable. The

threshold for the parent is the maximum value a and the
density near the treshold is given by the density of draws
near the maximum.

An interesting quantity to consider is the density of
state in the limit of r → 0, i.e. the density of states at
the maximum. For the weibull class we obtain from (35)

〈ρ(0, N)〉 = p(a) . (36)

Thus, the parent distribution at the treshold determines
whether the density of state goes to zero, to a finite value,
or to infinity.

B. aN → 0 (γ = 0)

We have seen that aN → 0 occurs also in the Gumbel
class (γ = 0). E.g. aN ∼ 1/

√
lnN → 0 for a Gaussian

parent and, in general, one has

aN ∼ (lnN)−1+1/δ for a parent p(y) ∼ exp (−xδ) .
(37)
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Thus aN → 0 for δ > 1 for parents which have no thresh-
old and decay to zero faster than an exponential (e−x).
The absence of threshold, however, yields a diverging bN

and, consequently, the simple Weibull result for the den-
sity of state becomes a bit more complicated

〈ρ(r,N)〉 = p(bN − r) . (38)

This result also means that the density of states at the
maximum has a zero limit

lim
N→∞

〈ρ(0, N)〉 = p(bN → ∞) → 0 . (39)

We note that the above result also holds for more com-
plicated parents [e.g. exp (−xδ)/xθ with δ > 1] provided
they decay to zero faster than an exponential.

C. aN → ∞ (γ > 0)

For parents decaying as a power law at large argu-
ments, the limit distribution P (x) is the Frechet distri-
bution belonging to the γ > 0 EVS class. As we saw
earlier, in this case, aN ∼ Nγ → ∞ and bN = 0, and
equation (34) takes the form

〈ρ(r,N)〉 =

∫

∞

−∞

dx p(aNx − r)P (x) . (40)

Since p(y → ∞) → 0, contribution to the above integral
comes only from x ≈ r/aN and we can write

〈ρ(r,N)〉 = AP (r/aN ) . (41)

The constant A is determined from the normalization
condition and one obtains

〈ρ(r,N)〉 =
1

aN
P

(

r

aN

)

= (42)

1

Nγ

(

1 +
γ r

Nγ

)

−1−1/γ

exp

[

−
(

1 +
γ r

Nγ

)

−1/γ
]

.

We should note that the character of the result is different
as compared to the case of aN → 0. The result there
does not carry any universality, it depends on the parent
distribution. Here, we obtained that the density of the
state depends on the parent only in the sense that the
asymptotics of the parent determines the parameter γ,
otherwise the density of state is the same for a large class
of parents.

D. aN → ∞ (γ = 0)

For the Gumbel class (γ = 0), we have aN → ∞ if the
parent decay slower than a simple exponential

aN ∼ (lnN)−1+1/δ , [ p(y) ∼ exp (−xδ) , δ < 1] . (43)

In this case, both aN and bN diverge and the only con-
tribution to the integral

〈ρ(r,N)〉 =

∫

∞

−∞

dx p(aNx + bN − r)P (x) (44)

comes from x ≈ (r − bN )/aN . We should remember that
we are in the γ = 0 class, thus P (x) is the Gumbel dis-
tribution and so, we obtain

〈ρ(r,N)〉 =
1

aN
P

(

r − bN

aN

)

= (45)

1

aN
exp

[

−r − bN

aN
− exp

(

−x − bN

aN

)]

.

The above results also hold for more complicated parents
[e.g. exp (−xδ)/xθ with δ < 1] provided they decay to
zero than than an exponential but faster than any power
law.

E. aN → finite (γ = 0)

The borderline case between aN → 0 and aN → ∞
is the case of exponential decay of the parent. In this
case, we have aN → a = finite and bN → ∞ and the x
dependence cannot be eliminated from p(ax + bN − r).
The result is a convolution of the parent with the Gumbel
distribution

〈ρ(r,N)〉 =

∫

∞

−∞

dx p(ax + bN − r)P (x) = R(r − bN )

(46)
where

R(u) =

∫

∞

−∞

dx p(ax − u) exp
(

−x − e−x
)

. (47)

F. General remarks for the density of states

Not very surprisingly, the structure of the results for
the density of states parallel that of the results for the gap
between the largest and the second largest. For Weibull
and for Gumbel with δ > 1, the gap closes in the large
N limit, and the density of state is determined by the
parent distribution near the largest. For Frechet and for
Gumbel with δ < 1, on the other hand, the gap between
the largest and the second largest diverges, only the large
scale features of the parent matter, and a universal den-
sity distribution emerges. The most complicated case
is the simple exponential parent which is at the border-
line between the above cases and the density distribution
picks up some features of both the parent and the limit
distribution.

IV. HOMEWORKS

Homework 4: Consider a mol of H2 gas at room
temperature. Estimate the expected maximum velocity
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in this gas. Estimate how accurately is the maximum ve-
locity given. Estimate the difference between the largest
and second largest velocities in the gas.

Homework 5: Distribution of the maximum daily
temperatures at the Amistad Dam. See link Homework

No.5 on the homepage of the course.
Homework 6: Determine the average gap between

the maximum and second maximum of daily tempera-
tures at the Amistad Dam. For temperature data see
link Homework No.5 on the homepage of the course.
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