
Order Statistics For i.i.d. Variables
(Dated: November 24, 2013)

I. INTRODUCTION WITH REFERENCES TO
EVS IN GENERAL

Extreme value statistics (EVS) was first developed in
mathematics [1–3]. Its importance was soon recognized
and emphasized in engineering [4, 5], followed by finance
and environmental problems [6–10]. Although applica-
tions in physics appeared relatively late, they cover a
wide range of fields including cosmology [11, 12], spin
glasses [13], random fragmentation [14], percolation [15],
random matrices [16], and, most actively studied at
present, interface fluctuations [17–24].

The extreme value in a batch of data is important,
but its study makes use of only a small fraction of the
available information. Accordingly, there have been var-
ious attempts to extend studies towards near extreme
characteristics, such as density of states near extremes
[25, 26], first-passage and return-time statistics [28, 29],
persistence [30], and record statistics [31–33]. A natu-
ral extension (which will be the concern in this lecture)
is to consider not only the extreme, but the sequence
x1, x2, ..., xk, ... of the 1st, 2nd, ..., kth,... largest, i.e. ex-
tract information from the order statistics of the system.

Order statistics has been much studied in mathematics
[29, 34]. All relevant quantities are known for indepen-
dent, identically distributed (i.i.d.) variables. Much less
is known about correlated variables.

II. PROBABILITY DISTRIBUTION FOR THE
kth LARGEST (I.I.D. VARIABLES)

As before, p(y) is the parent distribution, and we de-
note the integrated parent as

µ(z) =

∫ z

−∞

dyp(y) . (1)

N draws from the above distribution provides us with a
batch of random variables y1, y2, ..., yN . Let z be the kth

largest in the batch

y1 ≤ y2 ≤ ... ≤ yk−1 ≤ yk = z ≤ yk+1 ≤ ... ≤ yN . (2)

The probability distribution of the k-th maximum

P
(k)
N (z) is calculated from the condition that k − 1 par-

ticles are above z, 1 particle is in the interval [z, z + dz],
while k − 1 particles are above z + dz. The number of
ways to distribute N particles with the above constraints
is N !/[(k − 1)!1!(N − k)!] and so we have

P
(k)
N (z)dz =

N !

(k − 1)!(N − k)!
µN−k(z)p(z)dz[1−µ(z)]k−1.

(3)

The above expression can be simplified by using p(z) =
dµ/dz and remembering that the distribution of the

largest is given by P
(1)
N (z) = NµN−1dµ/dz:

P
(k)
N (z) =

(N − 1)...(N − k + 1)

(k − 1)!
P

(1)
N (z)

[

1

µ(z)
− 1

]k−1

.

(4)
Let us now make the appropriate change of variables z =
aNx+bN . Then P1(z,N) converges to the limit distribu-

tion P
(1)
N (z,N) → P1(x) and, since M(aNx + bN , N) =

µN (aNx + bN ) → M(x), we can write

µ(z = aNx + bN ) = M1/N (aNx + bN , N) →
M1/N (x) = 1 + lnM(x)/N + O(1/N2) (5)

and, consequently,

[

1

µ(z)
− 1

]k−1

→ [− lnM(x)]k−1

Nk−1
. (6)

Let us remember now that

M(x) = e−(1+γx)−1/γ

; P1(x) = dM(x)/dx (7)

and use (6) and (7) in (4) to obtain the probability dis-
tribution of the position of the kth largest

Pk(x) =
1

(k − 1)!
(1 + γx)−k/γ−1e−(1+γx)−1/γ

. (8)

In the limit of γ → 0 (Gumbel class), the above expres-
sion converges to

Pk(x) =
1

(k − 1)!
exp [−kx − exp (−x)] . (9)

III. PICTURE GALLERY OF THE
DISTRIBUTION OF THE kth LARGEST

Figure 1 shows the distribution of the kth largest for
the Gumbel class (γ = 0) for various ks. As one can see,
the distribution becomes narrower as k increases and,
furthermore, it seems to approach a Gaussian distribu-
tion (a saddle-point calculation shows that Pk(x) indeed
converges to a Gaussian for large k).

One should note that these distribution functions
emerged in the scaling limit. Thus, apart from the shift
to infinity, on the real scale, they may collapse (δ > 0)
or the distances between the maxima may go to infin-
ity (δ < 0), or the distances between the maxima may
become stationary [p(y) ∼ e−x] in the N → ∞ limit.

Figure 2 displays Pk(x) for the Frechet class (γ > 0)
for various ks and for γ = 1/5, 1/2 and 1. As one can
see, the series of distribution functions for small γ = 1/5
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FIG. 1: Distribution of the k-th largest for a parent having

the Gumbel as the limit distribution (e.g. e−xδ

).

is close to what we observe in case of the Gumbel class.
For small γ, the Frechet, the Gumbel, and the Weibull
classes are practically indistinguishable even if the full
order statistics is considered.

A remarkable feature we can observe for increasing γ
is that while the largest value has a wide spread, for
k = 8 or 16, the kth largest is much better localized.
This is understandable. For a power law distribution,
the outliers are far out but the majority of the draws are
close to the average (it is worth to examine in detail the
case of p(y) ∼ y−3).

Figure 3 shows the order statistics for the Weibull
class (γ < 0). For this case we changed from maximum to
minimum i.e. we are considering the parents which have
a lower cutoff [p(y) = 0 for y < y0] and the probability
distribution of the kth smalles Pk(x) is displayed for γ =
−1/5, −1/2, and −1.

We can see again that the small γ = −1/5 case is
remarkably similar to what we obtained for the Gum-
bel class (apart from the direction of the x-axis due to
studying the minimum insted of the maximum).

One should also note that for γ = −1 (the parent dis-
tribution is finite at the lower limit), the distribution of
the smallest P1(x) has a maximum at x = 0 while the
maximum is detached from zero for k ≥ 1

IV. CALCULATION OF 〈x〉k FOR THE
WEIBULL CLASS

We would like to see how does the spectrum of the
average position of the kth smallest 〈x〉k looks like. Let
us consider the case when the minimum of the parent
is at y = 0, and the small y asymptote of the parent is
p(y) ∼ y−1/γ−1 = y1/|γ|−1. Then the distribution of the
kth smallest is given by

Pk(x) =
1

|γ|(k − 1)!
xk/|γ|−1 exp (−x1/|γ|) . (10)
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FIG. 2: Distribution of the k-th largest for a parent start-
ing from x = 1 and having a large-x asymptote Ps(x) ∼

x−1/γ−1 ∼ x−6, x−3, x−2, respectively.

The average 〈x〉k is now calculated as

〈x〉k =

∫ ∞

0

x

|γ|(k − 1)!
xk/|γ|−1 exp (−x1/|γ|)dx

=
1

(k − 1)!

∫ ∞

0

uk+|γ|−1e−udu =
Γ(k + |γ|)

Γ(k)
. (11)
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FIG. 3: Distribution of the k-th smallest for a parent start-
ing from x = 0 and having a small-x asymptote Ps(x) ∼

x−1/γ−1 ∼ x4, x, const, respectively.

Using now an identity valid for large k

Γ(k + a)

Γ(k + b)
≈ ka−b (12)

we obtain our final result from (11)

〈x〉k ∼ k|γ| . (13)

It is remarkable that we obtained a discrete spectrum

from the order statistics.

V. COMPARING WITH QUANTUM SPECTRA

We shall now compare the order statistics spectra to
the energy spectra of quantum mechanical systems in
the quasi-classical limit. The reason for this comparison,
apart from its entertaining aspects, is that the discrete
quantum mechanical spectra may also be considered as
an order statistics spectra.

Let us consider a particle of mass m which moves in a
potential

V (x) = g|x|θ (14)

where g > 0 is the coupling constant. The simplest way
to calculate the quasi-classical limit of the spectra is to
use dimensional analysis combined with the observation
that, in the large quantum-number limit (k → ∞), the
quantization condition (

∫

pdq = kh) forces h and k to
appear in the combination hk. This means that the k-
dependence of the spectra is determined by its h depen-
dence. Since the energy is uniquely determined by the
dimensions of m, q, and h, one obtains

Ek ∼ (hk)2θ/(θ+2) . (15)

Comparing the above result with (13), one can see that
there is a mapping between the quantum mechanical and
the order statistics exponents:

|γ| =
2θ

θ + 2
. (16)

One can observe that the harmonic potential (θ = 2)
corresponds to a parent with γ = −1 i.e. to p(y) ∼
finite for y → 0 while the square-well potential (θ → ∞)
corresponds to γ = −2 (i.e. p(y) ∼ y−1/2).

It should be emphasized that it is not obvious that
the mapping between the exponents have any physical
content. Nevertheless, it is intriguing to ask whether
there is a quasi-classical extreme value question whose
answer is the quantum mechanical spectra.

VI. ASTROPHYSICAL APPLICATION:
TREMAIN-RICHSTONE RATIOS

In astrophysics, the maximal luminosity of galaxies in
a galaxy cluster has been investigated for a long time
[36]). In general, the applicability of the iid. description
of the EVS the maximum luminosities is doubted because
the gap between the largest and the second largest ap-
pears to be bigger than the i.i.d. prediction. The notion
is checked by considering some universal numbers which
are coming from the given i.i.d. EVS distribution. Two
simple quantities related to order statistics are the fol-
lowing ratios (introduced by Tremain and Richstone in
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FIG. 4: Galaxy cluster Hercules.

1977 [36])

T1 =
σ1

d12
≡

√

〈x2
1〉 − 〈x1〉2

〈x1 − x2〉
(17)

and

T2 =
σ12

d12
≡

√

〈(x1 − x2)2〉 − 〈(x1 − x2)〉2
〈x1 − x2〉

. (18)

The values of T1 = π/
√

6 = 1.28 and T2 = 1 are quoted
in the astrophysics literature for the Gumbel universality
class. Furthermore, it is proved generally, that T1 ≥
π/

√
6 and T2 ≥ 1 for i.i.d. EVS statistics (for arbitrary

γ). Below, we shall calculate T1 and T2 for the Gumbel
class.

A. Calculation of T1 for γ = 0

Practically, this has been done already in the previ-
ous lectures. Indeed, since T1 is a dimensionless ratio
of two differences, the aN and bN factors cancel when
calculating it for large N and the limit distribution can
be used to evaluate both the numerator and the denom-
inator (of course, one should use the same standardiza-
tion for the variable in the the limit distribution, e.g.
M(0) = M ′(0) = 1/e).

For γ = 0, using the Gumbel distribution, we find

〈x1〉 =

∞
∫

−∞

dzze−z−e−z

= γE (19)

where γE ≈ 0.577 is the Euler constant and, furthermore,
we obtain after some calculation or consulting integral
tables

〈x2
1〉 − 〈x1〉2 =

∞
∫

−∞

dzz2e−z−e−z − γ2
E =

π2

6
. (20)

The gap has been obtained for general γ [see eq.(15) in
Lecture 3-4]

〈x1〉 − 〈x2〉 = γ〈x1〉 + 1 . (21)

Using the above result for γ = 0 and substituting (20)
and (21) into (17), we obtain

T1 =
σ1

d12
≡

√

〈x2
1〉 − 〈x1〉2

〈x1 − x2〉
=

π√
6
≈ 1.283 . (22)

As one can see from Fig.5, T1 measured from the largest

FIG. 5: Tremain ratio [T1, see (17)] for galaxy clusters at var-
ious distances (redshifts). As one can see, the i.i.d. inequality
(T1 ≥ 1) is trongly violated.

and second luminosities in galaxy clusters is significantly
lower from the i.i.d. value T1 ≈ 1.283.

B. Calculation of T2 for γ = 0, and the joint
probability distribution of the largest and second

largest

The evaluation of T2 can also be done using any scale
for the distribution function, so we shall again use the
”P (0) = 1/e; M(0) = 1/e” convention where the distri-
bution function of the largest and the second largest have
the forms

P1(x) = e−x−e−x

, P2(x) = e−2x−e−x

. (23)

The rescaled numerator in T2 is the same as before 〈(x1−
x2)〉 = 1, but in order to calculate the fluctuation of x1−
x2, we need to derive the joint distribution of P (x1, x2).

The probability of z1 being the largest, z2 being the
second largest (in the original variables), and all the oth-
ers are smaller than z2 is given by

P (z1, z2)dz1dz2 = (24)

N(N − 1)µN−2(z2)θ(z1 − z2)p(z2)dz2p(z1)dz1
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where N(N − 1) comes from combinatorics [N !/(N −
2)!1!1!], and p(z) = dµ/dz is the parent, while µ(z) is the
integrated parent.

Making now the changes zi = aNxi + bN , and using
the large N limit where

µN (aNx + bN ) → M1(x) , (25)

and

µ(aNx + bN ) ≈ M
1

N
1 (x) , (26)

we can write

P (x1, x2)

= (N − 1)
dM1(x2)

dx2

p(aNx1 + bN )

µ(aNx1 + bN )
θ(x1 − x2)

=
dM1(x2)

dx2

dM1(x1)

dx1

M
1

N −1
1 (x1)

M
1

N
1 (x2)

θ(x1 − x2)

For large N , we can write M
1/N
1 (x) = 1+N−1 lnM1(x) ≈

1 and, furthermore, using [dM1(x)/dx]/M1(x) =
d ln M1(x)/dx, we obtain

P (x1, x2) = θ(x1 − x2)P1(x2)
lnM1(x1)

dx1
= (27)

θ(x1 − x2)(1 + γx1)
− 1

γ −1(1 + γx2)
− 1

γ −1e−(1+γx2)
−

1

γ

The above distribution function becomes especially
simple for the FTG class (γ → 0), where we have

P (x1, x2) = θ(x1 − x2)e
−e−x2

e−x1 . (28)

This expression can actually be interpreted in the follow-
ing way: x2 is the maximum (out of N − 1 → ∞) and
x1 > x2, with the distribution x1 becoming exponential
due to rescaling.

We are ready now to calculate 〈(x1 − x2)
2〉 needed for

the second Treamain-Richstone ratio. We shall calculate
separately the terms in

〈(x1 − x2)
2〉 = 〈x2

1〉 − 2〈x1x2〉 + 〈x2
2〉 . (29)

Let us begin by showing that 〈x2
2〉 can be expressed

through 〈x1〉 and 〈x2
1〉

〈x2
2〉 =

∞
∫

−∞

dzz2e−2z−e−z

=

∞
∫

−∞

dzz2e−z d
dz e−e−z

= z2e−ze−e−z
∣

∣

∣

∞

−∞
−

∞
∫

−∞

dz(2z − z2)e−z−e−z

= 〈x2
1〉 − 2〈x1〉 . (30)

Next, we calculate the correlation (〈x1x2〉) part. Using

the joint distribution (28), we have

〈x1x2〉 =

∞
∫

−∞

dz2

∞
∫

−∞

dz1z1z2θ(z1 − z2)e
−z2−e−z2

e−z1

=

∞
∫

−∞

dz2z2e
−z2−e−z2

∞
∫

z2

dz1z1e
−z1

=

∞
∫

−∞

dz2z2e
−z2−e−z2

(z2 + 1)e−z2 (31)

=

∞
∫

−∞

dz2(z
2
2 + z2)e

−2z2−e−z2

= 〈x2
2〉 + 〈x2〉 .

Collecting the terms (30) and (31), we obtain

〈(x1 − x2)
2〉 = 〈x2

1〉 + 〈x2
1〉 − 2〈x1〉 − 2(〈x2

2〉 + 〈x2〉)
= 2〈x2

1〉 − 2〈x1〉 − 2(〈x2
1〉 − 2〈x1〉 + 〈x2〉)

= 2〈x1〉 − 2〈x2〉 = 2 (32)

Earlier (21) we found 〈(x1−x2)〉 = 1. So, the fluctuation
of the gap between the 1st and the 2nd largest is obtained
as

〈(x1 − x2)
2〉 − 〈(x1 − x2)〉2 = 1 . (33)

and consequently, the second Tremain ratio is obtained
in agreement with calculations [36] for the exponential
parent distribution belonging to the FTG class

T2 =

√

〈(x1 − x2)2〉 − 〈(x1 − x2)〉2
〈x1 − x2〉

= 1 (34)

The measurements do not agree with the i.i.d. values of
T1 and T2. This suggests strong correlations among the
galaxies in a cluster. Before concluding this, however,
one must examine what are the effects coming from the
finite number of galaxies in a cluster (e.g. N = 100 in
the Hercules cluster shown in Fig.4). Thus we arrive to
the problem of finite-size corrections.

VII. HOMEWORKS

Homework 7: Consider the photons in a room of
temperature T . Determine the average energy of the
photon with the largest energy. Find the avarage dif-
ference between the largest and second largest energies
of the photons.

Homework 8: Calculate the 1st Tremain-Richstone
ratio T1 for −∞ < γ ≤ 1/2 (note that the second mo-
ments of the limit distribution will have to be calculated
and it does not exist for γ ≥ 1/2). Show that T1(γ) > 1
in the allowed range of γs.
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