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Fisher waves and front roughening in a two-species invasion model with preemptive competition
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We study front propagation when an invading species competes with a resident; we assume nearest-neighbor
preemptive competition for resources in an individual-based, two-dimensional lattice model. The asymptotic
front velocity exhibits an effective power-law dependence on the difference between the two species’ clonal
propagation rates (key ecological parameters). The mean-field approximation behaves similarly, but the power
law’s exponent slightly differs from the individual-based model’s result. We also study roughening of the front,
using the framework of nonequilibrium interface growth. Our analysis indicates that initially flat, linear invad-
ing fronts exhibit Kardar-Parisi-Zhang (KPZ) roughening in one transverse dimension. Further, this finding
implies, and is also confirmed by simulations, that the temporal correction to the asymptotic front velocity is

of 0(t72R).
DOI: 10.1103/PhysRevE.74.041116

I. INTRODUCTION

The dynamics of propagating fronts integrates concepts
shaping our understanding of how invasive species, emerg-
ing infectious disease, and evolutionary adaptations spread
across ecological landscapes [1]. Indeed, objects as seem-
ingly dissimilar as chemical reaction fronts [2] and the
spread of opinions [3] share certain basic spatiotemporal
properties. Fisher [4] and Kolmogorov er al. [5] first ad-
dressed velocity characteristics of simple fronts by modeling
a favored mutation’s one-dimensional spread with a reaction-
diffusion equation. A lengthy series of biologically general-
ized reaction-diffusion models has since appeared [6]. How-
ever, recent developments emphasize the ecological realism
of discrete individuals [7-9]. A paper by McKane and New-
man [10] reviews rigorous connections between these two
approaches, a systematic derivation of the former from the
latter, and their applicability for spatially extended ecological
systems. Our study analyzes front propagation at the discrete
individual level in the particular case when two clonal plant
species compete preemptively [11-16] for a common limit-
ing resource. Discrete individuals of each species propagate
clonally, so that competitive interactions are spatially local-
ized. An “invader” species has an individual-level reproduc-
tive advantage over a “resident” species, so that competition
is asymmetric.

This paper focuses on one-dimensional fronts separating
the species in a two-dimensional environment. We study the
asymptotic front velocity, as well as the temporal and finite-
size corrections (or rates of convergence) to this velocity.
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Furthermore, we investigate roughening of the moving fronts
from a nonequilibrium interface viewpoint [17,18].
Asymptotic properties of initially flat, linear fronts do offer
insights concerning the competitive dynamics of locally
propagating plants. Consider trembling aspen (Populus
tremuloides). Significant seed production, hence long-
distance dispersal, occurs only about once each five years
[19]. Most growth is clonal, where a new tree grows from an
existing tree’s roots. Clonally propagated trembling aspen
clusters occasionally expand to several thousand trees, and
cover >40 ha [20]. To model such systems, one can assume
that introductions of an invader by seed occur rarely and
stochastically, in both space and time. We have shown
[8,9,21,22] that the time evolution of the invader and resi-
dent populations in such systems can be well described
within the framework of homogeneous nucleation and
growth [23]. In particular, in two dimensions, for sufficiently
large systems, the typical time (lifetime) until competitive
exclusion of the weaker competitor scales as 7~ (fv?)~"3
[8,9,21,22], where I is the stochastic nucleation rate per unit
area of the successful clusters of the better competitor, and v
is the asymptotic radial velocity of the growing (on average)
circularly symmetric fronts. It is, thus, clear that the full
understanding of the dependence of the lifetime on the local
rates of the systems requires the knowledge of the velocity of
the front separating the two species. Furthermore, as circular
fronts grow sufficiently large, so that curvature corrections
become negligible, frontal velocities approach values for
linear fronts [1].

Recently we have reported preliminary results on the front
velocity in the model studied here [24]. This paper extends
our analysis by investigating the front’s propagation as a
nonequilibrium interface [17,18]. Our Monte Carlo simula-
tions not only provide numerical estimates for the front ve-
locity, but, through a detailed finite-size analysis, also iden-
tify the universality class of the moving and roughening
interface [17,18] separating the two species. Our results in-
dicate that the asymptotic front velocity scales as a power
law with the difference between the two species’ clonal
propagation rates. Further, we find that initially flat, linear
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invading fronts exhibit Kardar-Parisi-Zhang (KPZ) [25]
roughening in one transverse dimension. This finding im-
plies, and was also confirmed by our simulations, that the
temporal correction to the asymptotic front velocity is of
o(r?").

We organize the remainder of the paper as follows. In Sec.
IT we define the spatially explicit, individual-based model of
two-species competition. In Sec. III we compare simulation
results for the asymptotic front velocity with results from the
mean-field equations. In Sec. IV we carry out the analysis of
the interface roughening characteristics of the front, also
yielding the temporal and finite-size corrections to the
asymptotic front velocity. We discuss and summarize our re-
sults in Sec. V.

II. TWO-SPECIES INVASION MODEL
WITH PREEMPTIVE COMPETITION

Our analysis treats the velocity and roughening of invad-
ing fronts as functions of the propagation and mortality rates
of each species, with possible temporal and finite-size cor-
rections. On a two-dimensional L, X L, lattice, a site repre-
sents the minimal level of resources necessary to maintain a
single individual. Competition for the resource is preemptive
[11]; that is, a currently occupied site cannot be colonized by
any species until mortality of the occupant opens the site.
The local occupation number at site x is n,(x)=0,1 with
i=1,2, representing the number of resident and invader in-
dividuals, respectively. Since two species cannot simulta-
neously occupy the same site, the excluded volume con-
straint yields n,(x)n,(x)=0. A species may occupy new sites
only through local clonal propagation. Therefore, a species
occupying site X may only reproduce if one or more of its
neighboring sites is empty (here we consider only nearest-
neighbor interactions).

During our time unit, one Monte Carlo step per site
(MCSS), L,L, sites are chosen at random for updating. The
local configuration of a chosen site is updated according to
the following transition rates. An empty site may be occu-
pied by species i through clonal reproduction from a neigh-
boring site at rate «;7,(x), with ¢; being the individual-level
reproduction rate for species i, and

ﬂi(X) = (1/4)2)(’ eNN(x)ni(X,)

is the density of species i in the neighborhood around site x;
NN(x) is the set of nearest neighbors of site x. An occupied
site opens through mortality of the individual; the mortality
rate w is the same for both species. The transition rules for an
arbitrary site x can be summarized as follows:

ay7(x) " "

0 — 2, 1—0, 2—0, (1)

ayn;(x)
0 — 1,

where 0, 1, 2 indicates whether a site is open, resident-
occupied, or invader-occupied, respectively.

One should note that the above discrete stochastic model,
governed by preemptive competition, is a two-species
generalization [9] of the basic contact process [7,15,26].
Each species, in the absence of the other one, becomes ex-
tinct (through a transition to an absorbing phase [27]) if
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FIG. 1. (Color) Snapshots of the moving and roughening front
in the early-time regime (=200 MCSS) and in the steady state
(r=20000 MCSS) for a;=0.50, @,=0.70, ©=0.20, and L,=200.
White represents empty sites, while blue and red correspond to sites
occupied by the residents and the invaders, respectively.

a; < a.(w), where o, (w)=1.65u[9,15] [and a,(u)=u in the
mean-field approximation, see Sec. III A]. We are interested
in the scenario where competition between the two species
drives the dynamics (i.e., not extinction by insufficient colo-
nization rates), and one of the species (the invader) has a
reproductive advantage over the resident. Hence, we study
the a (u) < a; < a, regime.

To study front propagation, we impose periodic boundary
conditions along the y direction of an L, XL, lattice. The
initial condition is a flat linear front (straight vertical line),
i.e., the invader completely occupies a few vertical columns
at the left edge of the lattice, and all other remaining sites are
occupied by the resident species. The direction of propaga-
tion, therefore, is along the x direction. As the simulation
begins, many individuals of both species die in a few time
steps, and the densities on both sides of the front quickly
relax to their “quasiequilibrium” values, where clonal propa-
gation is balanced by mortality (Fig. 1). As the simulation
evolves, we track the location of the invading front by defin-
ing the edge as the location of the right-most individual of
the invading species /,(t) for each row y. The average posi-

tion }_z(t)z(l/Ly)Eyhy(t) is then recorded for each time step,

from which we extract the velocity [as A(r) approaches a
constant slope for late times]. We ran each simulation until
the front reached the end of the system. The longitudinal
system size L, has no particular impact on the system’s time
evolution, although it constrained the maximal length of our
simulations.

One can also observe (Fig. 1), that as the front propagates,
it also “roughens,” i.e., the typical size of the fluctuations
about the mean front position is increasing, before it reaches
the steady state for a given transverse system size L,. This
kinetic roughening phenomenon [17,18] will be discussed in
detail in Sec. IV.
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III. INVASION AS PROPAGATION
INTO AN UNSTABLE STATE

A. Mean-field equations and the asymptotic front velocity

Taking the master equation corresponding to transition
rates in Eq. (1), and neglecting correlations between densi-
ties at different sites [10], yields dynamics of the ensemble-
averaged local densities p;(x,1) ={n;(x,1)). We obtain

pi(x,t+ 1) — pi(x,1)

a; ,
= [1 - pl(xat) - pZ(X’t)]_ E pl(x ’t) - Mpi(x’t)’
x’ eNN(x)

2)

where i=1,2. Taking the naive continuum limit of the above
equations, one obtains the (coarse-grained) equations of
motion

dpi(x.1) = %[1 — p1(x.0) = pa(x.0)]V?pi(x.1)

+ ai[l - Pl(XJ) - Pz(x’t)]Pi(X’t) - MPi(X»I)’
3)

i=1,2. The spatially homogeneous solutions of these equa-
tions (p,p,), are (0,0), (1-u/a;,0), and (0,1-u/ ). In
the parameter regime of our interest, u<<a;<a,, only the
last solution (0, 1—u/ay) is stable. Thus, the propagation of
a front separating the stable (0,1-u/a,) (invader domi-
nated) and unstable (1-u/a;,0) (resident dominated) re-
gions amounts to propagation into an unstable state
[4,5,28-30], a phenomenon that has generated a vast amount
of literature [31] since the original papers by Fisher [4]
and Kolmogorov et al. [5]. At the level of the mean-field
equations, the front is “pulled” by the leading edge into
the unstable state. Then, for a sufficiently sharp initial
density profile [1,31], the asymptotic velocity is determined
by the infinitesimally small density of invaders that intrude
into the linearly unstable region dominated by the resident
species. Linearizing Egs. (3) about the unstable state,
pi=1—-ula+ @, py=d¢d,, one immediately obtains for the
density of invaders

3ya(x,1) = g—‘%vzcﬁz(x,z) + u(ﬂ - 1)¢2(x,z). )
1

a

Performing standard analysis [1,29-31] on the above equa-
tion, we obtain the asymptotic velocity of the “marginally
stable” invading fronts

M
v =a_\’012(012—041)- (3)

1
The velocity v* above is the minimum velocity of a physi-
cally allowed traveling wave, permitted by Egs. (4), and
is actually realized by deterministic nonlinear reaction-
diffusion dynamics for sufficiently sharp initial profiles
[1,29-31]. For further comparisons, we also note that
the above asymptotic front velocity is approached as
v(t)=v"=0(1/1) [31]. Also, as can be seen from Eq. (5), for
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FIG. 2. (Color online) (a) Asymptotic mean-field front velocities
for three different mortality rates for fixed a,=0.70, as a function of
the difference of propagation rates a,— ;. Symbols are obtained by
numerically iterating the nonlinear mean-field equations of motion
[Eq. (2)]. The solid curves running through the data points are the
analytically obtained velocities in the “leading edge” approximation
[Eq. (5)], as described in the text. The straight dashed line indicates
the slope 6=0.5, corresponding to the exponent of an effective
power law for small differences between the reproduction rates. (b)
Asymptotic front velocities from Monte Carlo simulations for the
individual-based stochastic model for fixed @, =0.70 as in (a), with
L,=100, for three values of u. The solid straight lines are the best-
fit effective power laws in the region where the difference between
the reproduction rates is small, corresponding to 6=0.61%0.04,
0=0.66+0.04, and 0=0.60+0.04 for u=0.1, ©=0.2, and u=0.3,
respectively. For comparison, the straight dashed line corresponds
to the effective power law of the mean-field case with an exponent
0=0.5.

small differences in the reproduction rates of the two species
(a parameter of ecological significance), the front velocity
scales as v~ (ap,—a;)? with 6=1/2.

It is important to note that the front velocity given by Eq.
(5), obtained by linearizing Eq. (3), fully reproduces the
velocity obtained by numerically iterating the nonlinear
continuous-density mean-field equations [Eq. (2)], as can be
seen in Fig. 2(a). This is a generic and powerful feature of
deterministic pulled fronts where, despite the nonlinearity of
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the full dynamics, velocities are completely determined by
the leading edge [1,31].

B. Monte Carlo results for the front velocity

We now present results for the discrete individual-based
stochastic model defined by the transition rates (1). We
found that the front velocity is much smaller than that of the
mean-field approximation as shown in Fig. 2(b) [see Fig.
2(a)]. Further, for small differences in the reproduction
rates, the velocity is described by an effective power law
v ~(ay—a;)? with 6=0.6 [Fig. 2(b)], slightly, but dis-
tinctly, greater than the exponent #=0.5 of the mean-field
case. We must caution, however, that the above approximate
behavior, an effective power law, extracted from a very lim-
ited range (less than a decade) of data, may not hold (or the
exponent may change) in the asymptotic (a,—a;) — 0 limit.
Unfortunately, as the reproduction rates get very close, sto-
chastic fluctuations (and, consequently, measurement errors
for finite sampling times) begin to dominate over the mean
velocity (as it approaches zero), and we could not obtain
reliable data deeper in the small-(a,— ;) regime to test the
robustness of the above power law.

Similar deviations from the mean-field exponent have
been found in two-dimensional epidemic [32] and reaction-
diffusion models [33]. The discreteness of the individuals
[34-36] and noise [37,38] have been shown to contribute to
a velocity that is different from the mean-field description.
The general belief is that fronts in stochastic individual-
based (or particle) models are “pushed,” in the sense that the
front velocity is determined by the full nonlinear front re-
gion, instead of an infinitesimally small leading edge [31], a
behavior predicted by the mean-field approximation. Our
two-species model provides an example of this generic
behavior.

An interesting feature of the invasion fronts is that their
propagation velocity approaches the asymptotic value rather
slowly [e.g., as O(1/t) in mean-field models [31]]. Thus, in
view of model applications, it is important to establish how
the front reaches its asymptotic velocity. In the next section,
we are going to analyze both the temporal and finite-size
approach toward the asymptotic front velocity, along with
other universal characteristics (such as interface roughening
[17,18]) of the model, using the framework of scaling in
nonequilibrium interfaces.

IV. INTERFACE ROUGHENING AND CORRECTIONS
TO THE ASYMPTOTIC FRONT VELOCITY

A. Dynamic scaling

To extract the scaling properties of the roughening of the
front, as can be seen in Fig. 1, we analyze the width of the
front

LV
e, ={ =S o -roP), 6)

yy=1

where () is defined as the location of the leading indi-
vidual in row y for the invading species. In what follows, we
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define L=L,, and investigate the scaling properties of the
width (w?(L,t)) within the standard framework of dynamic
scaling of nonequilibrium interfaces [17,18].

The temporal and system-size scaling of the width
(WX(L,1)) typically identifies the universality class of the
growing front. In finite systems, the width grows as
(W(L,1)) ~ 1* from early to intermediate times. At a system-
size-dependent crossover time, ¢y ~ L%, it saturates (reaches
steady state) and scales as <W§al> =(w*(L,®))~L>* where L
is the transverse linear system size. «, (3, and z are referred to
as the roughness, growth, and dynamic exponents, respec-
tively. Further, these exponents are not independent, but obey
the scaling relation a=/3z. The above temporal and system-
size behavior, with the appropriate crossover time, can be
captured by the Family-Vicsek scaling form [39]

(WH(L,1)) = L**f(t/L?). (7)

For small values of its argument, f(x) behaves as a power
law, while for large arguments it approaches a constant

B forx<1,
fx) = { (®)

const for x> 1

yielding the scaling behavior of the width in the growth and
steady-state regime, provided the scaling relation for the ex-
ponents a= 3z holds.

As shown in Fig. 3, our results show reasonable agree-
ment with the exponents of the well-known KPZ universality
class (8=1/3, and a=1/2) [17,18,25]. Further, the scaled
width (W*(L,1))/L** vs t/L* produces good data collapse, as
suggested by Eq. (7), and confirms dynamic scaling for the
invasion process [Fig. 3(a), inset].

B. Steady-state width distribution

For further analysis, we also constructed the full distribu-
tions P(w?) of the steady-state width for different system
sizes (i.e., the normalized histograms of the width obtained
from the steady-state time series). This observable typically
provides an additional strong signature of the underlying uni-
versality class of the fluctuating and growing interface [40].
In particular, for the one-dimensional KPZ class, it has been
obtained analytically [40] and can be written in the generic
scaling form P(w?)=(w?)"'®(w?/(w?)) with

)

q)(x) — ?E (_ 1)”‘1nze‘(“2/6)”2". (9)

n=1

In Fig. 4 we show the scaled width distribution
P(w?){w?) vs w?/{w?) for various system sizes and compare
it with the above analytic scaling function ®(x). Our data,
again, strongly suggest that propagating planar fronts in our
two-species invasion model belong to the one-dimensional
KPZ universality class. The large deviations and data scat-
tered around peaks of the distributions are due to sampling
error. Steady-state time series for larger systems become
strongly correlated, and so require excessively long simula-
tions to generate sufficiently large statistically independent
samples. Figure 4 also shows the KPZ width distribution in
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FIG. 3. (Color online) (a) The average width as a function of
time (on log-log scales) for various system sizes, averaged over 20
independent realizations, for «;=0.70, @,=0.80, and ©=0.10. The
dashed line corresponds to the one-dimensional KPZ power law
with the exponent 28=2/3. The inset shows the scaled plot
(WA(L,1))/L** vs t/L* using the one-dimensional KPZ exponents.
(b) Steady-state width as a function of the system size L(=L,) for
the same clonal propagation and mortality rates as in (a). The solid
line corresponds to the best-fit power law with the exponent 2«
=0.95+0.01.

two transverse dimensions [42], offering a comparison sug-
gested by a recent, somewhat counterintuitive conjecture
[41]. That conjecture suggests that fronts which are pulled in
the mean-field limit belong to the one higher dimensional
KPZ class than one would normally expect (i.e., two instead
of one transverse dimension in our model). We give more
discussion on this topic aspect in Sec. V.

C. Temporal and finite-size corrections
to the asymptotic front velocity

Although the actual value of the velocity of the invading
front is not universal, Krug and Meakin [43] showed that the
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FIG. 4. (Color online) (a) Steady-state width distributions for
a,=0.70, a»,=0.80, and u=0.10 for various system sizes L. The
solid curve is the scaled analytic width distribution of the one-
dimensional KPZ class [40], Eq. (9). For comparison, the two-
dimensional scaled KPZ width distribution is also shown, as ob-
tained in Ref. [42]. (b) The same as (a) but on log-normal scales.

forms of the temporal and finite-size corrections of the front
velocity, v(L,7)=dh(L,t)/dt, are universal. More specifi-
cally, corrections to the asymptotic front velocity v” are
given by [43]

v = 209 for r < L7,

v(L,t))=) .
.9 v —Cy for t> L%,

L—2(1—a) (10)

where a and z are the roughness and dynamic exponents
characterizing the universality class of the model, and ¢,
and ¢, are nonuniversal constants depending on the param-
eters and microscopic details of the specific model. Translat-

ing their results to the easily measurable quantity 4(¢)/¢ (by

integrating the above equation with respect to time and
dividing the result by ¢), one also has
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FIG. 5. (Color online) (a) Temporal corrections to the
asymptotic front velocity for L=800 for different values of a,, with
a;=0.50 and ©=0.20. The horizontal (time) axis is scaled as %3,
motivated by the form of the corrections of the one-dimensional
KPZ class [Eq. (11)]. The inset enlarges the regime of (a) where the
universal temporal corrections follow the KPZ behavior. The
straight solid lines correspond to the linear scaling as a function of
213, (b) Finite-size corrections to the asymptotic velocity as a func-
tion of L~!, motivated by the universal corrections of the one-
dimensional KPZ class, for a;=0.50, a,=0.70, and u=0.20. The
straight dashed line corresponds to the linear behavior as a function
of 1/L.

h(L,t v =209 for r< 7,
Lo _[v'—c -

t v =, L2079 for ¢ L7,

where c¢;=c,z/(z+2a-2). In particular, for the one-
dimensional KPZ class, 2(1-a)/z=2/3 and 2(1-a)=1.
Thus, the early-time temporal and late-time finite-size cor-
rections scale as O(+"*3) and O(L™"), respectively. Our data
for the velocity of the propagating front in the two species-
invasion model follows these corrections very closely (Fig.
5), offering additional evidence that the front belongs to the
one-dimensional KPZ class. Also, note that the temporal re-
laxation of the front velocity is in contrast to mean-field
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results where pulled fronts exhibit O(¢™!) corrections to the
asymptotic velocity [31].

V. DISCUSSION AND SUMMARY

We studied front propagation in a two-species model for
ecological invasion with preemptive competition, applicable
to clonal plants. We performed dynamic Monte Carlo simu-
lations using the local transition rules [Eq. (1)] for initially
flat linear fronts. We found the front velocity significantly
smaller than that of the mean-field approximation. Also, for
small differences between local reproduction rates, the
asymptotic front velocity scales as an effective power law
v~ (a,—a;)? with #=0.6, an exponent slightly but notice-
ably different from the mean-field value 6=0.5. The discrete-
ness of the individuals [34-36] in our lattice model (or the
effective density cutoffs in a continuum description) and
noise [37,38] have been shown to contribute to the devia-
tions from the mean-field results. More specifically, fronts in
stochastic individual-based models, which in the mean-field
limit converge to a pulled front solution, are instead
“pushed.” Therefore, the front velocity is determined by the
entire nonlinear front region, instead of the infinitesimally
small leading edge alone [31]. Our model is an example for
this type of behavior.

We also investigated the universal features of the rough-
ening of the propagating front, separating the invaders and
the residents. We found that the front roughening in our two-
species invasion model belongs to the one-dimensional KPZ
class. We must also place our results in the context of a
recent conjecture by Tripathy er al. [41] that propagating
fronts, which in the mean-field limit are “pulled,” exhibit
KPZ scaling on a (d | + 1)-dimensional “substrate” (where d |
is the dimension of the space transverse to the direction of
propagation), as opposed to the naive expectation of a
d | -dimensional KPZ growth (i.e., two-dimensional instead
of one-dimensional in our case.) That conjecture [41] was
based on field-theoretical arguments, but were subsequently
shown by Moro [33] to apply only to systems where stochas-
tic effects are due to external fluctuations (such as fluctua-
tions in the parameters of the model). Most recently, it was
argued [31,33] and demonstrated [33] that, in fact, fronts,
which in the mean-field limit are “pulled,” in the presence of
internal fluctuations (i.e., systems with stochastic particle dy-
namics), belong to the “usual” d | -dimensional KPZ univer-
sality class. While corrections-to-scaling effects and system
size limitations can often hinder a high-precision determina-
tion of the exponents associated with interface roughening,
the width distributions provide a very strong signature and
aid in determining the universality class of the interface [40].
To that end, we included the two-dimensional width distri-
bution [42] in Fig. 4, supporting the conclusion that our two-
species invasion model with stochastic particle dynamics ex-
hibits “standard” (one-dimensional) KPZ roughening, in
agreement with the most recent generic arguments [31,33].

Although linear fronts are somewhat artificial in the con-
text of ecological invasion, as noted in the Introduction, they
do offer insight into more realistic scenarios. Consider, for
example, that an advantageous allele or a competitively su-
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perior species is introduced through mutation within [9,21]
or through geographic dispersal to [8,22] a resident popula-
tion, respectively. Introductions occur rarely and stochasti-
cally in both space and time. Thus, small clusters of an ad-
vantageous allele or superior species can randomly
“nucleate” and subsequently grow. We have shown
[8,9,21,22] that the time evolution of such systems can be
well described within the framework of homogeneous nucle-
ation and growth. The growing clusters, on average, have
radial symmetry and reach an asymptotic velocity v* for suf-
ficiently long times. The corrections to the asymptotic radial
velocity of these circular fronts have two contributions. First,
the typical length of the perimeter of the cluster scales as
L(t) ~2mR(t) ~t, where R(z) is the radius of the cluster.
Since z>1, t<L*(r) for late times, i.e., the relevant KPZ
correction for radially growing clusters is always of O(r">?)
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[43]. Second, for long times, when the radius of the cluster is
sufficiently large, the curvature introduces an additional
O(R™Y)~O(t™") correction, subdominant to the above KPZ
correction. Thus, circular fronts are expected to reach the
same asymptotic velocity as their linear counterpart, with the
same leading-order O(1*3) corrections for late times.
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