Pattern Formation - Homework 4 Deadline: November 12, 6PM
(1) Morphogenesis (40pt)

Let us consider the morphogenesis model described in the following pages. Determine the homogeneous
stationary solution a = ag,h = hg of the system. Find the values of the control parameters where the
homogeneous solution loses its stability. What is the instability type and what kind of patterns do we expect
to observe?



10.4 A Model for Morphogenesis

When reading our book the reader may have observed that each discipline has its
“model” systems which are especially suited for the study of characteristic features,
In the field of morphogenesis one of such “systems’ is the hydra. Hydra is an ani-
mal a few mm 1n length, consisting of about 100,000 cells of about 15 different types.
Along i1ts length 1t is subdivided into different regions. At one end 1ts “*head” is
located. Thus the animal has a “polar structure™. A typical experiment which
can be done with hydra 1s this: Remove part of the head region and transplant it to
another part of the animal. Then, if the transplanted part is 1n a region close to the
old head, ne new head 1s formed, or, in other words, growth ot a head s inkAibited.
On the other hand, if the transplant is made at a distance sufficiently far away
from the old head, a new head is formed by an activation of cells of the hydra by
the transplant. It 1s generally accepted that the agents causing biological processes
such as morphogenesis are chemicals. Therefore, we are led to assume that there
are at least two types of chemicals (or “‘reactants™): an activator and an inhibitor,
Nowadays there 1s some evidence that these activator and inhibitor molecules
really exist and what they possibly are. Now let us assume that both substances
are produced 1n the head region of the hydra. Since ihibition was present still 1n
some distance from the primary head, the inhibitor must be able to diffuse. Also
the activator must be able to do so, otherwise 1t could not influence the neighboring
cells of the transplant.

Let us try to formulate a mathematical model. We denote the concentration of
the activator by 4, that of the inhibitor by /4. The basic features can be seen in the
frame of a one-dimensional model. We thus let ¢ and 4 depend on the coordinate
x and time ¢. Consider the rate of change of a, da/¢t. This change is due to
1) generation by a source (head):

production rate: g, (10.21)
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2) decay: —pua, (10.22)
where u is the decay constant
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D, diffuston constant.

3) diffusion: D (10.23)

Furthermore it is known from other biological systems (e.g., slime mold, compare
Section 1.1} that autocatalytic processes (*‘stimulated emission”) can take place.
They can be described—depending on the process—by the production rate

k.a, (10.24)
or
k,a*, etc. (10.25)

Finally, the effect of inhibition has to be modelled. The most direct way the
inhibitor can inhibit the action of the activator is by lowering the concentration of a.
A possible “ansatz” for the mmhibition rate could be

—ah. (10.26)

Another way is to let 4 hinder the autocatalytic rates (10.24) or (10.25). The
higher A, the lower the production rates (10.21) or (10.25). This leads us in the case
(10.25) to
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Apparently there is some arbitrariness in deriving the basic equations and a final
decision can only be made by detailed chemical analysis. However, selecting

typical terms, such as (10.21), (10.22), {10.23), (10.27), we obtain for the total rate
of change of a
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ox

Let us now turn to derive an equation for the inhibitor A. It certainly has a decay
time, i.e., a loss rate

—vh, (10.29)

and it can diffuse:

2
D ok (10.30)

haxz-



A R RS IR R T e L

10.4 A Model for Morphogenesis 301

Again we may think of various generation processes. Gierer and Meinhard, whose
equations we present here, suggested (among other equations)

production rate: ca?, (10.31)

1.e., a generation by means of the activator. We then obtain

oh 0%h
= ca* — vh + D,,é—?. (10.32)

Betore we represent our analytical results using the order parameter concept in
Section 10.5, we exhibit some computer solutions whose results are not restricted to
the hydra, but may be applied also to other phenomena of morphogenesis. We
simply exhibit two typical results: In Fig. 10.2 the interplay between activator and
inhibitor leads to a growing periodic structure. Fig. 10.3 shows a resulting two-
dimensional pattern of activator concentration. Obviously, in both cases the
inhibitor suppressed a second center (second head of hydra!) close to a first center
(primary head of hydra!). To derive such patterns it is essential that /# diffuses more
easily than g, 1.e, D, > D,. With somewhat further developed activator-inhibitor
models, the structures of leaves, for example, can be mimicked.

Fig. 10.2. Developing activator
concentration as a function of space
and time (computer solution). (After

H. Meinhardt, A. Gierer: J. Cell Sci.
15, 321 (1974))

In conclusion we mention an analogy which presumably is not accidental but
reveals a general principle used by nature: The action of neural networks (e.g., the

cerebral cortex) is again governed by the interplay between short-range activation
and long-range inhibition but this time the activators and inhibitors are neurons.




Fig. 10.3. Results of the morphogenetic model. Left column: activator concentration plottet over
two dimensions. Right column: same for inhibitor. Rows refer to different times growing from
above to below {computer solution). (After H. Memharde. A. Gicrer: J. Cell Sci. 15, 321 (1974}))



