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Helical and helicoidal precipitation patterns emerging in the wake of reaction-diffusion fronts are

studied. In our experiments, these chiral structures arise with well-defined probabilities PH controlled by

conditions such as, e.g., the initial concentration of the reagents. We develop a model which describes the

observed experimental trends. The results suggest that PH is determined by a delicate interplay among the

time and length scales related to the front and to the unstable precipitation modes and, furthermore, that

the noise amplitude also plays a quantifiable role.
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Helices and helicoids are present from the nanoscale to
the macroscale (ZnO nanohelices [1], macromolecules
and inorganic crystals with a helical structure [2,3], pre-
cipitation helices [4–6], fiber geometry of heart walls [7]).
The formation of these fascinating structures generally
follows two routes. First, templates with chiral symmetry
(e.g., oragogel fibers) may exist in the system, and the
symmetry is just transcribed to a structure (e.g., inorganic
materials [8]) at a larger scale. Second, spontaneous
symmetry breaking may occur through the self-assembly
of achiral building blocks into a helical or helicoidal
structure, such as, e.g., in the case of crystals with chiral
morphology [2,9].

Theoretically, the symmetry-breaking route is more
interesting. Universal aspects may emerge, and the robust
features of this self-organization process may be important
for applications as well. Indeed, control over creating
helical structures would make engineering (in particular,
the bottom-up design of micropatterns [10]) more flexible
since chiral morphology of materials is known to affect
their physical (electronic) properties [6,11].

In order to develop insight into the genesis of helices or
helicoids, we investigate an emblematic example of pattern
formation, namely, the formation of precipitation patterns
in the wake of reaction-diffusion fronts [12,13]. The moti-
vation for this choice comes from the observation that
helicoidal structures have an axis, and the correlations
are simple in the plane perpendicular to the axis. This
suggests that building the perpendicular correlations in
the wake of an advancing planar front may be a simple
and natural mechanism of creating helices or helicoids.
Additional motivation comes from the existence of a large
body of knowledge in the related Liesegang phenomena
[12,13]. It allows the use of well-established experimental
and theoretical approaches, thus making it easier to
develop a novel view on the formation of helical structures.

Our main results concern the probabilistic aspects of
the symmetry-breaking route. We determine the probabil-
ity PH of the emergence of single helices or helicoids in
Liesegang-type experiments as the conditions such as the
initial concentration of inner or outer electrolytes or the
temperature are changed. PH is found to be well reproduc-
ible and large (PH > 0:5 for some parameter range). The
results are understood by expanding and simulating a
model of formation of precipitation patterns [14]. We
explicitly observe that the origin of helices or helicoids is
not to be found in the fluctuations and asymmetry of the
initial or boundary conditions [15,16]. Instead, the growth
of unstable modes, the dynamics of the front, and the bulk
fluctuations (noise) combine to yield the helices.
In our experiments, we study the precipitation reaction

Cu2þðaqÞ þ CrO2�
4 ðaqÞ ! CuCrO4ðsÞ in 1% agarose gel.

The gel soaked with K2CrO4 (inner electrolyte) is placed
in a test tube, and a solution of CuCl2 (outer electrolyte)
is poured on top of the gel. Setting the concentration of
the outer electrolyte an order of magnitude larger than that
of the inner electrolyte yields a reaction front diffusing
into the gel, and a Liesegang pattern of precipitation bands
forms behind the front (Fig. 1). Frequently, however, heli-
coids evolve from the same macroscopic experimental
conditions (Fig. 1). We quantified the stochastic nature
of this intriguing phenomenon by varying the concen-
tration of the outer (a0) and inner (b0) electrolytes, the
radius of the test tube (R), and the temperature (T) and by
measuring PH using 10 independent experiments for each
parameter set.
Similar experiments were carried out in a quasi-two-

dimensional geometry as well. The gel (with the inner
electrolyte B) was placed in the gap between two test tubes
of slightly different radii (�R ¼ 2 mm), thus effectively
confining the pattern to the surface of a cylinder (Fig. 2).
In this geometry, we observed the formation of regular
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Liesegang rings, single helices, double helices, and more
complex patterns for large R.

Figure 1 shows regular bands and helicoidal patterns in
test tubes of various radii, together with the measured
probability of helicoid formation (PH). We observe no
helicoids below a critical radius (Rc ¼ 1:5 mm), in agree-
ment with theoretical expectations based on a simplified
model where the reaction front moves with fixed velocity
[15,16]. For R> Rc, one finds that PH increases with
increasing R and reaches rather large values (PH � 0:7 at
R ¼ 8 mm) before decreasing again. The decrease at large
R is due to the noticeable proliferation of complex struc-
tures (double or triple helicoids, disordered patterns) which
suppress the weight of single helicoids.

Before describing the experiments further, we turn to
the theory since it allows a more concise discussion of the
results. Theories of Liesegang-type patterns combine the
properties of a moving front (i.e., where and at what rate
the reaction product, Aþ B ! C, appears) with the details

of the precipitation (i.e., how the reaction product, C, turns
into precipitate). While the front properties have been
thoroughly studied and understood both theoretically
[17,18] and experimentally [19,20], the dynamics of pre-
cipitation is more debated [13,18]. The competing pre- and
postnucleation views can be combined [18,21], and we
shall use a simple version [14] based on the Cahn-
Hilliard equation with noise added [22–24]. This equation
features spinodal-decomposition-type fast dynamics, as
well as slower nucleation-and-growth processes [25].
Driving it with a reaction zone gives us a flexible model
with a variety of pattern-formation regimes.
The reaction front appears due to a strongly inhomoge-

neous initial distribution of the reagents A and B. The
reaction takes place in a gel (occupying the half space
x > 0), and, initially, the inner electrolyte B is homoge-
neously distributed [bðx > 0; y; t ¼ 0Þ ¼ b0]. The outer
electrolyte A of much higher concentration [aðx < 0;
y; t ¼ 0Þ ¼ a0 with a0 � b0] is brought into contact
with the gel at t ¼ 0. Assuming a second-order irreversible
reaction Aþ B ! C, the front invading the gel can be
described by the equations

@ta ¼ DA�a� kab; (1)

@tb ¼ DB�b� kab; (2)

where both the reaction rate k and the diffusion coeffi-
cients, which are assumed to be equal (DA ¼ DB ¼ D), are
set to 1 by an appropriate choice of the time and length
scales [26]. The front, specified in terms of the rate of
production of C’s (kab), is narrow and moves into the gel

diffusively. Its position is given by xf ¼
ffiffiffiffiffiffiffiffiffiffiffi

2Dft
p

, where Df

is a function of D and b0=a0. The front leaves behind a
constant concentration of C’s (c0), where c0 depends on D
and b0=a0, and it is practically independent of k. Provided
the system with c0 is unstable or metastable, a phase
separation of C’s into regions of high (ch) and low (c‘)
concentrations takes place. This process is described by the
Cahn-Hilliard equation with source (kab) and noise (�c)
terms added:

@tm ¼ ���ðm�m3 þ ��mÞ þ kabþ �c: (3)

Here, m is the concentration of C’s shifted by �c ¼
ðch þ c‘Þ=2 and scaled by ĉ ¼ ðch � c‘Þ=2, so that
m ¼ ðc� �cÞ=ĉ is 1 for c ¼ ch and m ¼ �1 for c ¼ c‘.
The parameters � and � are the rescaled kinetic coefficient
and surface tension, respectively [14,23,24]. Their ratio
�u � �=� defines a characteristic time scale of the growth
of unstable modes in precipitation. Comparing �u with the
time the front passes through a region determines whether
slow nucleation-and-growth or fast spinodal decomposi-
tion dominates the pattern formation.
Adding noise (�c) is essential since the formation

of helices is a symmetry-breaking process. Furthermore,
the noise widens the available regions of the meta- and

FIG. 2 (color online). Transformation of the thin layer of gel in
the tube-in-tube experiment into a two-dimensional strip. The
Liesegang bands and the helices in the experiments were ob-
tained in agarose gel at T¼22�C, a0¼0:5M, and b0 ¼ 0:01 M,
with the radii of the outer and inner tubes being 8 and 6 mm.
The scaled parameters used for the simulations (columns on the
right, with the precipitate shown in white) were a0¼80, b0 ¼ 1,
� ¼ 0:8, � ¼ 0:2, � ¼ 0:05, and Ly ¼ 64.

FIG. 1 (color online). Regular Liesegang (leftmost tube) and
helicoidal (all other tubes) patterns in agarose gel with the
numbers corresponding to the tube radius R measured in mm.
R is varied at fixed experimental conditions (T ¼ 22 �C,
½Cu2þ�0 ¼ a0 ¼ 0:5 M, and ½CrO2�

4 �0 ¼ b0 ¼ 0:01 M), and

the probability of helicoid formation PH is displayed (right
panel). No helicoid appears for R � Rc.
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unstable states (see earlier morphological phase diagrams
of Liesegang patterns [27]). Noiseless Cahn-Hilliard-type
dynamics where the front moves with fixed velocity have
been much studied [28,29]. In these cases, however, noise
was present in the initial state and complex morphologies
resulted from complex initial conditions or from complex
motion of the reaction front. Our model without the noise
reproduces the properties of the regular Liesegang patterns
[14,30]. Inclusion of the bulk noise allows us to demon-
strate the existence of helices and to understand the
experimental trends in their emergence.

From a theoretical point of view, the tube-in-tube experi-
ments are the easiest to describe. We can cut and open
the cylinder as shown in Fig. 2 and treat the thin layer as a
two-dimensional strip of width Ly ¼ 2�R and length equal

to the tube length Lx [31]. Accordingly, Eqs. (1)–(3) are
solved in a rectangle of size Lx � Ly with periodic bound-

ary conditions in the y direction and no-flux boundary
conditions at the lower edge (x ¼ Lx, y). At the upper
edge [the initial location of the front (x ¼ 0, y)], we use
a slightly idealized boundary: The concentration of the
outer electrolyte is kept at a constant value aðx ¼ 0; y; tÞ ¼
a0= �c while the no-flux condition is adopted for B and C.
The initial conditions reflect the experimental setup:
bðx > 0; y; t ¼ 0Þ ¼ b0= �c, aðx > 0; y; t ¼ 0Þ ¼ 0, and
cðx; y; t ¼ 0Þ ¼ 0. The discretized noise term �c is imple-
mented by moving C’s between neighboring sites at a rate
�c ¼

ffiffiffi

c
p

r, where r is uniformly distributed in the interval
[� �, �]. In the following, � is called the amplitude of the
noise.

Our simulations indicate that both the Liesegang bands
and the helices emerge in a wide range of the parameters.
There are, of course, some constraints, e.g., � must be
sufficiently small for the phase separation to take place.
Examples of simulations are shown in Fig. 2 (rightmost
two columns), where a Liesegang pattern and a helix are
displayed [26]. A general feature of the simulations is that
the chirality of the helices is random within the statistical
error of 100 independent simulations. This is in agreement

with the experiments where, out of 96 helicoids or helices,
the ratio of left- and right-handed patterns is 50=46. We
consider this as experimental evidence that the macro-
scopic symmetry breaking is not driven by microscopic
objects of a given chirality.
To characterize the emergence of the helices quantita-

tively, we collected data by varying a0, b0, �, and Ly

and determined PH from the outcome of 100 simulations
with distinct random number sequences for �c. Since the
kinetic coefficients � and � cannot be controlled exter-
nally, we kept them fixed (� ¼ 0:2, � ¼ 0:8) throughout
the simulations.
First, we varied a0= �c and � while keeping b0= �c ¼ 1 and

Ly ¼ 64 fixed. Figures 3(a) and 3(b) show that PH is

remarkably large; it increases with a0 and reaches PH �
0:4–0:6 for large a0= �c. A similar trend is also seen in the
experiments. Since a0=b0 determines the front motion,
with larger a0 corresponding to faster diffusion, an impor-
tant conclusion from Fig. 3(a) is that the fast motion of the
front facilitates the emergence of helices.
Figures 3(a) and 3(b) also show that no helices form

even for larger a0= �c if the noise is too small. Increasing the
noise first increases PH; then, PH saturates in the region
0:05<�< 0:09; finally, PH ! 0 due to the absence of
phase separation above � � 0:09. Comparing Fig. 3(b)
with experiments is difficult since the link between �
and T is through complex changes in diffusion, reaction
rates, etc. Our experiments indicate that PH increases with
T. This is in agreement with Fig. 3(b), provided �� T and
the experimental T corresponds to small values of �.
We also varied b0= �c and � while fixing a0= �c ¼ 80 and

Ly ¼ 64 [Fig. 3(c)]. The probability PH was found to be

maximal in the middle of the spinodal region (b0= �c �
0:9–1:1), where isotropic precipitation structures develop
through fast-growing linearly unstable modes. Comparing
the simulations [Fig. 3(c)] with experiments is difficult
since neither � nor the experimental concentration scale,
�c ¼ ðch þ c‘Þ=2 � ch=2, are known. We estimated ch by
assuming that all the precipitate was in the helices, and all

FIG. 3 (color online). The probability of helicoid or helix formation PH in experiments (large red dots) and in simulations
(small symbols). Displayed are the dependence [(a) and (c)] on the outer and inner electrolyte concentrations, (b) on the noise
amplitude, and (d) on the radius (width) of the system. The values of the parameters kept fixed in a panel, and the experimental
estimate of the scale factor �c are discussed in the text. Statistical errors are shown for the experiments and for a single set of
simulations.
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the B’s reacted and turned into C’s. This estimate left an
apparent shift between the experimental and simulation
points [Fig. 3(c)]. The shift may well be the consequence
of overestimating ch (e.g., not all the B’s reacted or the
bands are wider than their optical width).

The effect of increasing width (Ly) is displayed in

Fig. 3(d). The experimental parameters are described in
Fig. 1, while, in simulations, we used a0= �c¼15, b0= �c ¼ 1,
and � ¼ 0:04. The experimentally observed lower
threshold for the emergence of helices is clearly present
(Lyc � 32), and one can also recognize the trend that PH

first increases with Ly and then decreases for large Ly.

As in experiments, PH decreases due to the proliferation of
more complex structures. Complexity builds up for large
Ly since more long-wavelength transverse modes (modes

in the y direction) can fit into the system. They are unstable
modes of the Cahn-Hilliard dynamics facilitating the for-
mation of more intricate patterns.

The common trends found in experiments and simula-
tions suggest that our model contains the right ingredients,
and we can develop a physical picture of helix formation
by observing the simulations. Figure 4 displays two ex-
amples of time evolutions with parameters set to have
roughly equal probabilities for bands and helices. There
are many ways of choosing such parameters, but the char-
acteristic features of the dynamics are always the same.
Essential among them is that, initially, the reaction front
moves fast enough to produce a domain where the system
is unstable and roughly homogeneous (fuzzy regions in the
t ¼ 720–960 plates in Fig. 4). The homogeneity makes
possible the generation of isotropic patterns which com-
pete with the anisotropic influence of the front favoring
band formation perpendicular to the front motion
(t ¼ 1440–1920 plates in Fig. 4). The outcome of this
competition determines whether Liesegang bands, single
helix, double helix, or more complicated patterns emerge.

One can quantify the above picture by noting that homo-
geneous patterns can form only if the front moves a dis-
tance of the order Ly in a time �f ¼ L2

y=2Df that is smaller

than the time, �u, required for the precipitation to develop.
To estimate �u, we calculate the growth rate, !k	 ¼
�=4� � 1=�u, of the fastest-growing mode of wave num-

ber k	 ¼ 1=
ffiffiffiffiffiffiffi

2�
p

using linearized Cahn-Hilliard dynamics
for a quench to the middle of the miscibility gap [mð0Þ�0].
Then, assuming that the homogeneous structure emerges
from the noise, we have

ffiffiffiffi

�
p

exp ð!k	�uÞ � mð�uÞ � 1, and

the inequality �f < �u yields an upper limit for the width

of a system L2
y < 4Df�j ln�j=� where a helix can form.

A lower limit can also be found since the characteristic size

of the domains (L	 � 2�=k	 ¼ 2�
ffiffiffiffiffiffiffi

2�
p

) formed by the
fastest-growing modes must be smaller that the width of
the system (L	 <Ly); otherwise, no structure forms in the

y direction. The combination of the two inequalities

8�2�< L2
y < 4Df�j ln�j=� (4)

reflects some of the trends observed in the experiments and
simulations. Namely, the formation of helices is facilitated
by a fast moving front, i.e., by Df being large, which, in

turn, requires a0 to be large; furthermore, there is a mini-
mal width below which no helices form.
Since the width (Ly) is bounded from both sides, it may

happen that no helices can form. When searching for
helices, one should, in general, use a fast front (e.g., by
selecting large a0) and create an unstable state behind the
front by placing the system deep in the miscibility gap
(e.g., by experimenting with b0). Finding the right tem-
peratures is also important, but it is a rather complex
problem left for future studies.
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