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Width distributions and the upper critical dimension of Kardar-Parisi-Zhang interfaces
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Simulations of restricted solid-on-solid growth models are used to build the width distributions of
d=2-5 dimensional Kardar-Parisi-ZhafigPZz) interfaces. We find that the universal scaling function asso-
ciated with the steady-state width distribution changes smoothdyissicreased, thus strongly suggesting that
d=4 is not an upper critical dimension for the KPZ equation. The dimensional trends observed in the scaling
functions indicate that the upper critical dimension is at infinity.
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I. INTRODUCTION study[10] of the mode-coupling equations gives no indica-
tion for the existence of a finitd, either.
The Kardar-Parisi-Zhan(KPZ) equation 1] has been in- There are, of course, problems with both the analytic ap-

troduced to model growth in terms of a moving interface.proaches and the numerical works. Assumptions about the
The equation is written for the heigh{r,t) of the interface  scaling structure of the solution underlie the field theoretic
above ad-dimensional substrate approaches, and uncontrolled approximations are made when
writing down the governing equation in mode-coupling theo-
ries[19]. Additional uncertainties come from the use of vari-
ous self-consistency schemes in solving the mode-coupling
equations. Simulations and numerical works have their own
where v and \ are parameters, whilg(r,t) is a Gaussian share of difficulties. The systems in higher dimensions can-
white noise. Equatioiil) also takes into account a number of not be large; the extraction of exponents using fitting proce-
other interesting phenomen@urgers turbulence, directed dures which involve correction-to-scaling terms makes the
polymers in random media, etcand, accordingly, a lot of error estimates suspect, and there may be difficulties with the
effort has been spent on finding and understanding the scatumerical solution of the mode-coupling equations as well
ing properties of its solution2—4]. These intensive studies [11].
notwithstanding, a number of unsolved issues remain, the In view of the above controversy, it is highly desirable to
question of upper critical dimensiaih, being the most con- approach thel, problem in a way unbiased by approxima-
troversial one. tions and fitting procedures. Such an approach is described
The importance attached th, stems from the hope that, below where we study the steady-state width distributions of
in analogy with equilibrium critical phenomena, a better un-d=1 tod=5 KPZ interfaces.
derstanding can be achieved through systematic expansions
in terms ofd,—d. The search fod, has been going on for Il. WIDTH DISTRIBUTIONS
about 1 decadfs—16] and the results range froth~2.8 to
d,=. Analytical estimates originate mainly from mode
coupling theories which yield exact results fd=1 [17].
Extending this approach to higher dimensidiis-11] one
obtains values ofl, which, after refining the self-consistency
schemes, appear to settle dg=4. The resultd,=4 also
emerges from various phenomenological field-theoreti
scheme$5,13] and some nontrivial consequences of the phe- 1 o
nomenological arguments appear to be in agreement with Wy=— E [h(r,t)—h]?, (2
simulations[18]. AL
tior|1n O(f:()tutéaztpt; égi ;?Oa%tgélsﬁrﬁ)ﬁlr;[?g:se %f nstigteerrlﬁsa ! bsecilu\}\{hereAL is the area of the substlrate of characteris'tic linear
longing to the KPZ universality clagd4,15, and the results dimensionL, andh=ZXh(r,t)/A_is the average height of
of real-space renormalization group calculatifhg] provide ~ the surface. Sampling, in the steady state, one can build
no evidence for a finitel,. Furthermore, the only numerical the so called width distributiof®, (w,)dw,, defined as the
probability thatw, is in the interval[w,,w,+dw,]. If the

quantitiesh(r,t)—ﬁwere uncorrelated at large distances the

ah=vV2h+\(Vh)2+ 7, (1)

The width distributions have been introduced to provide a
more detailed characterization of surface growth processes
[20-23, and they have been used to establish universality
classes of rather diverse phenom¢fd—29. The quantity
whose distribution is of interest here is the mean-square fluc-
ctuation of the interface defined by

*Electronic address: enzo.marinari@romal.infn.it probability distribution ofw, would be approaching(w,
TElectronic address: andrea.pagnani@romadl.infn.it —({w,), ) for L—oo. On the contrary, the fact that the distri-
*Electronic address: giorgio.parisi@romadl.infn.it bution is nontrivial implies that these quantities are strongly
SElectronic address: racz@poe.elte.hu correlated at a large distance.
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The usefulness of this distribution lies in the following
observation supported by all the examples studied s@rfar 4r
cludingd=1- and 2-dimensional KPZ surfacgz0—22,28). ~
Namely, in systems where the steady-state roughness di- 2 5 L
verges(w,), —o in theL—c limit, P, (w,) assumes a scal- °/:
ing form «

S 5 b
A\
1l
R —— ( s ) 3) e

W ~ — -, 1 -
N (T T R (N ©

. . : . . 0
where®d 4(x) is a universal scaling function characteristic of 0

the universality class of a given nonequilibrium dynamics in

dimensiond. This universality is understandable, it is a con-

sequence of the facts théi) a steady state can be considered FIG. 1. Scaling function for the width distributidiEg. (3)] of

as a critical state if the fluctuations diverge, &iglin critical ~ KPZ systems in dimensior=1-5, withL giving the largest lin-

systems, the distribution functions of macroscopic quantitie§ar size of the system in whichy(x) was measured.

(such agw,)) are characterized by scaling functions which

are universal. As one can see in Figs. 1 and 2, the scaling functions
The universality of®4(x) allows the investigation of the change smoothly ad increases. Tha&y(x)’s become nar-

problem ofd,, once it is noted that the scaling functions rower and more centered or=1, and there does not seem

depend on dimensionality up tb=d, and they are expected to be any break in this behavior d&=4. The equality of the

to take on a fixed shape fa=d,. Thus if one finds that d=4 and 5 scaling functions appears to be excluded. Since

scaling functions vary smoothly in dimensions:ti<d, one  our conclusion abou,>4 rests on the above observations

we must now discuss some details in order to make it more

can conclude thal—1<d,,. This is the line of argument we _ ;
an a visual observation.

employ below for KPZ systems. We shall compare the scalll he basi bl h L . d
ing functions Eq(3) for 1<d<5 using the exact results for The basic problems that may arise in measuring steady-

the d=1 steady staté20], previously obtained simulation state properties are the problems of statistics, relaxation, and
data for 2<d<4 restrictéd solid-on-solidRSOS growth finite size. Since the multisurface coding allowed the simu-

: lations of 32 or 64 systems in one run, we had no problem
mggg:s[lé%'raﬁa?z gf?: ;:%tlni% nﬁ]v;tde::%fgr()t(t)iz 5cE§r(1)gSe gathering data with good statistics. The relaxation time prob-

smoothly asd is varied, thus suggesting thdg>4. lems were taken care of by having very long runs and being

It is important to recognize that there are no fitting proce—In the asymptotic plateau region wk, for at leasa 1 order

dures in the above approach. The width distributions are jus(?f magnitude longer period than the time of reaching the

histograms calculated from Monte Carlo simulations. Bmh{)llzﬁeau(for detalls see discussion and Figs. 3, 5, and 7 in
quantitiesw, and (w), entering Eq.(3) are measured and T)He solution to the finite-size problem is less obvious
no scaling properties dfv,), are used or assumed. The only he | b tion here 1 R[h t the’ ¢ '
approximation is the finite size of the systems investigated. I& M |r.np.0.rtant observa |0n_ ere 1s that the's ciJn\ée.rge N
should be noted, however, that our approach relies only o eir limiting shape whem=N/Ns>2, whereN=L"is the
the shape of the scaling functions. Since the important size

dependences reside in the argument of these functions the ' ' ' ' ' '
functional forms converge at small sizes. A further and rather

important observation that helps us to reach our conclusionis 72, 1

that, as we shall show below, the scaling functions converge E

to well distinguished forms for £d<5. "

Let us now present and discuss the evidence for our con-
clusion ofd,>4. The scaling functions Ed3) for dimen- v 01
sionsd=1-5 are displayed in Figs. 1 and 2. Tthe 1 curve %
is an exact result20]. The rest is obtained from simulations -4
of the RSOS model that is believed to belong to the univer-
sality class of the KPZ equatidi30]. The RSOS model and 0.01

its simulations are described 5] where systems with hy-
percubic substrates of volumé! were studied and periodic
boundary conditions were used. A multisurface coding tech-
nique allowed us to obtain excellent steady-state statistics for FiG. 2. The same as Fig. 1 but on a semilog scale in order to
systems ugl=4 and we took the results from this work to demonstrate the differences at small probabilities. Note that the
build @ 4(x) for d=2-4. We have then extended these simu-ange ofx has been enlarged so that the largasymptotics would
lations to find®4(x) for d=5 as well. be better seen.

026136-2



WIDTH DISTRIBUTIONS AND THE UPPER CRITICA . ..

]
L Ea i
* 45 d L
= e g 27+
z s L F % 2 157 ]
% b Xy 4 13 x
\ VN R —
3 7 X3
v 2 '8 ; > 7T b
I 2 > 1
e 1r /
L — H L 1 i SRV
04 06 08 1 12 14 16 18

X=w, /< Wy >

FIG. 3. Finite-size effects on the scaling functifigqg. (3)] in
dimensiongd=2, 4, and 5.L denotes the linear size of the hyper-
cubes investigated.

number of lattice sites in the hypercubic substrate wiKilés
the number of surface sites of the hypercubey., N=L2
andNs=4L -2 for d=2). Figure 3 demonstrates this obser-
vation for thed=2 and 4 systems. Results for the system
with L=7 (r~2) andL=157 (r~40) are compared for
d=2 and one finds that they have the sadms within the
statistical errors of the simulatiof81]. A similar conclusion
can be drawn by comparing the=13 (r~2) and L
=25 (r=~3.5) systems id=4 (analogous results fat=3
are not displayed in Fig. 3 in order to keep clarity in the
presentation
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FIG. 4. Dimensional dependence of the relative fluctuations of
w,. The extrapolated valuesy(L—»)=0cy4() [see Eq.(4)] are
plotted against I with the solid line given byr3=0.714.

The resultoy4=0.71M indicates thatoy—0 for d— oo,
i.e., the scaling function converges to a delta-functijr)
at d=o. Remarkably, the convergencky(x)— §(x) also
takes place in a related surface-growth model, in the
Edwards-Wilkinson model ifl— 2 [21]. Sinced=2 happens
to be the upper critical dimension of this modgle interface
becomes flat fod>d,=2) one may speculate that the re-
sults displayed in Fig. 4 actually give support to the sugges-
tion that failure of numerical attempts at locating a findte
means that,=c for KPZ systemg33].

We need the ~2 convergence rule because the largest

d=5 system we can study hds=15, corresponding to
~2. The results fob displayed in Fig. 3 indicate that the
r~2 rule applies tal=5 as well. Indeed, systematic devia-
tions between thé =11 andL =15 curves can be detected
only at small values ofb5 in the region ofx<0.85. An
important feature of the size dependencelgfthat can be
seen in Fig. 3 is that the maximum @f5 increases slightly
with size. This means that, near the maximuby,— ®, be-
comes larger with increasirlg thus excluding the possibility
of &5 and ®, becoming equal. The different functional
forms for the scaling functions id=4 and 5 then indicate
that d=4 is not the upper critical dimension for the KPZ
systems.

The concept of smooth changes acrdss4 can be put on

a more quantitative basis by examining the dimensional

trend in the spread of the scaling function around its averag
x=1

<(W2)2>

(wp)?

: (4)

o= J:dx(x—l)2<1>d(x)=

which is related to relative mean-square fluctuationsvef
Apart from the case afi=1, theL dependence af is very
weak and plottingoy(L) against 1L yields accurate esti-
mates ofo4(°). The values ofry4(0) are displayed in Fig. 4.
As one can see, the straight liog~0.714d gives an excel-
lent description of the dimensional dependencergffor d
>1 [32].

Ill. FINAL REMARKS

We should note that the conclusialy>4, in principle,

could be avoided by postulating the existence of a distinct
phase above=4. Then the crossover dt=4 is not neces-
sary to a state with dimension independent scaling proper-
ties. It should be emphasized, however, thatdkeb simu-
lations did not show any evidence of a distinct phase and, in
particular, we did not see any signature of a glassy phase that
has been discussed as a possibility dor4 KPZ systems
[34,9. Thus, we believe that the main results of this paper
(Figs. 1 and 2 provide strong evidence fat,=5 while the
results displayed in Fig. 4 sugge@déss strongly but quite
definitely) thatd,=co.
Finally, let us also note that the results displayed in Figs.
¢ and 2 can be appreciated from another point of view.
Namely, we have constructed the scaling functions of width
distributions for the KPZ universality class. Thus we have
expanded the picture gallery of scaling functions that may be
used for identifying the universality classes of nonequilib-
rium steady states.
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