
PHYSICAL REVIEW E, VOLUME 65, 026136
Width distributions and the upper critical dimension of Kardar-Parisi-Zhang interfaces
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Simulations of restricted solid-on-solid growth models are used to build the width distributions of
d52 –5 dimensional Kardar-Parisi-Zhang~KPZ! interfaces. We find that the universal scaling function asso-
ciated with the steady-state width distribution changes smoothly asd is increased, thus strongly suggesting that
d54 is not an upper critical dimension for the KPZ equation. The dimensional trends observed in the scaling
functions indicate that the upper critical dimension is at infinity.
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I. INTRODUCTION

The Kardar-Parisi-Zhang~KPZ! equation@1# has been in-
troduced to model growth in terms of a moving interfac
The equation is written for the heighth(r ,t) of the interface
above ad-dimensional substrate

] th5n“2h1l~“h!21h, ~1!

wheren and l are parameters, whileh(r ,t) is a Gaussian
white noise. Equation~1! also takes into account a number
other interesting phenomena~Burgers turbulence, directe
polymers in random media, etc.! and, accordingly, a lot of
effort has been spent on finding and understanding the s
ing properties of its solutions@2–4#. These intensive studie
notwithstanding, a number of unsolved issues remain,
question of upper critical dimensiondu being the most con-
troversial one.

The importance attached todu stems from the hope tha
in analogy with equilibrium critical phenomena, a better u
derstanding can be achieved through systematic expans
in terms ofdu2d. The search fordu has been going on fo
about 1 decade@5–16# and the results range fromdu'2.8 to
du5`. Analytical estimates originate mainly from mod
coupling theories which yield exact results ford51 @17#.
Extending this approach to higher dimensions@7–11# one
obtains values ofdu which, after refining the self-consistenc
schemes, appear to settle todu54. The resultdu54 also
emerges from various phenomenological field-theore
schemes@5,13# and some nontrivial consequences of the p
nomenological arguments appear to be in agreement
simulations@18#.

In contrast to the analytical approaches, numerical so
tion of the KPZ equation@14#, simulations of systems be
longing to the KPZ universality class@14,15#, and the results
of real-space renormalization group calculations@16# provide
no evidence for a finitedu . Furthermore, the only numerica
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study @10# of the mode-coupling equations gives no indic
tion for the existence of a finitedu either.

There are, of course, problems with both the analytic
proaches and the numerical works. Assumptions about
scaling structure of the solution underlie the field theore
approaches, and uncontrolled approximations are made w
writing down the governing equation in mode-coupling the
ries @19#. Additional uncertainties come from the use of va
ous self-consistency schemes in solving the mode-coup
equations. Simulations and numerical works have their o
share of difficulties. The systems in higher dimensions c
not be large; the extraction of exponents using fitting pro
dures which involve correction-to-scaling terms makes
error estimates suspect, and there may be difficulties with
numerical solution of the mode-coupling equations as w
@11#.

In view of the above controversy, it is highly desirable
approach thedu problem in a way unbiased by approxim
tions and fitting procedures. Such an approach is descr
below where we study the steady-state width distributions
d51 to d55 KPZ interfaces.

II. WIDTH DISTRIBUTIONS

The width distributions have been introduced to provid
more detailed characterization of surface growth proces
@20–23#, and they have been used to establish universa
classes of rather diverse phenomena@24–29#. The quantity
whose distribution is of interest here is the mean-square fl
tuation of the interface defined by

w25
1

AL
(

r
@h~r ,t !2h̄#2, ~2!

whereAL is the area of the substrate of characteristic lin
dimensionL, and h̄5( rh(r ,t)/AL is the average height o
the surface. Samplingw2 in the steady state, one can bui
the so called width distributionPL(w2)dw2, defined as the
probability thatw2 is in the interval@w2 ,w21dw2#. If the
quantitiesh(r ,t)2h̄ were uncorrelated at large distances t
probability distribution ofw2 would be approachingd(w2
2^w2&L) for L→`. On the contrary, the fact that the distr
bution is nontrivial implies that these quantities are stron
correlated at a large distance.
©2002 The American Physical Society36-1
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The usefulness of this distribution lies in the followin
observation supported by all the examples studied so far~in-
cludingd51- and 2-dimensional KPZ surfaces@20–22,28#!.
Namely, in systems where the steady-state roughness
vergeŝ w2&L→` in theL→` limit, PL(w2) assumes a scal
ing form

PL~w2!'
1

^w2&L
FdS w2

^w2&L
D , ~3!

whereFd(x) is a universal scaling function characteristic
the universality class of a given nonequilibrium dynamics
dimensiond. This universality is understandable, it is a co
sequence of the facts that:~i! a steady state can be consider
as a critical state if the fluctuations diverge, and~ii ! in critical
systems, the distribution functions of macroscopic quanti
~such aŝ w2&) are characterized by scaling functions whi
are universal.

The universality ofFd(x) allows the investigation of the
problem of du , once it is noted that the scaling function
depend on dimensionality up tod5du and they are expecte
to take on a fixed shape ford>du . Thus if one finds that
scaling functions vary smoothly in dimensions 1<d<d̂, one
can conclude thatd̂21,du . This is the line of argument we
employ below for KPZ systems. We shall compare the sc
ing functions Eq.~3! for 1<d<5 using the exact results fo
the d51 steady state@20#, previously obtained simulation
data for 2<d<4 restricted solid-on-solid~RSOS! growth
models@15#, and by generating new data for thed55 RSOS
model. Our main finding is that theFd(x)’s change
smoothly asd is varied, thus suggesting thatdu.4.

It is important to recognize that there are no fitting proc
dures in the above approach. The width distributions are
histograms calculated from Monte Carlo simulations. Bo
quantitiesw2 and ^w2&L entering Eq.~3! are measured an
no scaling properties of^w2&L are used or assumed. The on
approximation is the finite size of the systems investigated
should be noted, however, that our approach relies only
the shape of the scaling functions. Since the important
dependences reside in the argument of these functions
functional forms converge at small sizes. A further and rat
important observation that helps us to reach our conclusio
that, as we shall show below, the scaling functions conve
to well distinguished forms for 1<d<5.

Let us now present and discuss the evidence for our c
clusion of du.4. The scaling functions Eq.~3! for dimen-
sionsd51 –5 are displayed in Figs. 1 and 2. Thed51 curve
is an exact result@20#. The rest is obtained from simulation
of the RSOS model that is believed to belong to the univ
sality class of the KPZ equation@30#. The RSOS model and
its simulations are described in@15# where systems with hy
percubic substrates of volumeLd were studied and periodi
boundary conditions were used. A multisurface coding te
nique allowed us to obtain excellent steady-state statistics
systems upd54 and we took the results from this work t
build Fd(x) for d52 –4. We have then extended these sim
lations to findFd(x) for d55 as well.
02613
di-

s

l-

-
st
h

It
n
e
he
r
is
e

n-

r-

-
or

-

As one can see in Figs. 1 and 2, the scaling functio
change smoothly asd increases. TheFd(x)’s become nar-
rower and more centered onx51, and there does not see
to be any break in this behavior atd54. The equality of the
d54 and 5 scaling functions appears to be excluded. Si
our conclusion aboutdu.4 rests on the above observatio
we must now discuss some details in order to make it m
than a visual observation.

The basic problems that may arise in measuring stea
state properties are the problems of statistics, relaxation,
finite size. Since the multisurface coding allowed the sim
lations of 32 or 64 systems in one run, we had no probl
gathering data with good statistics. The relaxation time pr
lems were taken care of by having very long runs and be
in the asymptotic plateau region ofw2 for at least a 1 order
of magnitude longer period than the time of reaching
plateau~for details see discussion and Figs. 3, 5, and 7
@15#!.

The solution to the finite-size problem is less obviou
The important observation here is that theFd’s converge to
their limiting shape whenr 5N/Ns>2, whereN5Ld is the

FIG. 1. Scaling function for the width distribution@Eq. ~3!# of
KPZ systems in dimensionsd51 –5, withL giving the largest lin-
ear size of the system in whichFd(x) was measured.

FIG. 2. The same as Fig. 1 but on a semilog scale in orde
demonstrate the differences at small probabilities. Note that
range ofx has been enlarged so that the large-x asymptotics would
be better seen.
6-2
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number of lattice sites in the hypercubic substrate whileNs is
the number of surface sites of the hypercube~e.g., N5L2

andNs54L22 for d52). Figure 3 demonstrates this obse
vation for thed52 and 4 systems. Results for the syste
with L57 (r'2) and L5157 (r'40) are compared fo
d52 and one finds that they have the sameF ’s within the
statistical errors of the simulations@31#. A similar conclusion
can be drawn by comparing theL513 (r'2) and L
525 (r'3.5) systems ind54 ~analogous results ford53
are not displayed in Fig. 3 in order to keep clarity in t
presentation!.

We need ther'2 convergence rule because the larg
d55 system we can study hasL515, corresponding tor
'2. The results forF5 displayed in Fig. 3 indicate that th
r'2 rule applies tod55 as well. Indeed, systematic devi
tions between theL511 andL515 curves can be detecte
only at small values ofF5 in the region ofx<0.85. An
important feature of the size dependence ofF5 that can be
seen in Fig. 3 is that the maximum ofF5 increases slightly
with size. This means that, near the maximum,F52F4 be-
comes larger with increasingL, thus excluding the possibility
of F5 and F4 becoming equal. The different functiona
forms for the scaling functions ind54 and 5 then indicate
that d54 is not the upper critical dimension for the KP
systems.

The concept of smooth changes acrossd54 can be put on
a more quantitative basis by examining the dimensio
trend in the spread of the scaling function around its aver
x51

sd
25E

0

`

dx~x21!2Fd~x!5
^~w2!2&

^w2&
2

21, ~4!

which is related to relative mean-square fluctuations ofw2.
Apart from the case ofd51, theL dependence ofsd is very
weak and plottingsd(L) against 1/L yields accurate esti
mates ofsd(`). The values ofsd(`) are displayed in Fig. 4
As one can see, the straight linesd'0.71/d gives an excel-
lent description of the dimensional dependence ofsd for d
.1 @32#.

FIG. 3. Finite-size effects on the scaling function@Eq. ~3!# in
dimensionsd52, 4, and 5.L denotes the linear size of the hype
cubes investigated.
02613
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The resultsd'0.71/d indicates thatsd→0 for d→`,
i.e., the scaling function converges to a delta-functiond(x)
at d5`. Remarkably, the convergenceFd(x)→d(x) also
takes place in a related surface-growth model, in
Edwards-Wilkinson model ifd→2 @21#. Sinced52 happens
to be the upper critical dimension of this model~the interface
becomes flat ford.du52) one may speculate that the r
sults displayed in Fig. 4 actually give support to the sugg
tion that failure of numerical attempts at locating a finitedu
means thatdu5` for KPZ systems@33#.

III. FINAL REMARKS

We should note that the conclusiondu.4, in principle,
could be avoided by postulating the existence of a disti
phase aboved54. Then the crossover atd54 is not neces-
sary to a state with dimension independent scaling prop
ties. It should be emphasized, however, that thed55 simu-
lations did not show any evidence of a distinct phase and
particular, we did not see any signature of a glassy phase
has been discussed as a possibility ford.4 KPZ systems
@34,9#. Thus, we believe that the main results of this pap
~Figs. 1 and 2! provide strong evidence fordu>5 while the
results displayed in Fig. 4 suggest~less strongly but quite
definitely! that du5`.

Finally, let us also note that the results displayed in Fi
1 and 2 can be appreciated from another point of vie
Namely, we have constructed the scaling functions of wi
distributions for the KPZ universality class. Thus we ha
expanded the picture gallery of scaling functions that may
used for identifying the universality classes of nonequil
rium steady states.
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FIG. 4. Dimensional dependence of the relative fluctuations
w2. The extrapolated valuessd(L→`)5sd(`) @see Eq.~4!# are
plotted against 1/d with the solid line given bysd50.71/d.
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@22# Z. Rácz and M. Plischke, Phys. Rev. E50, 3530~1994!.
@23# T. Antal and Z. Ra´cz, Phys. Rev. E54, 2256~1996!.
@24# G. Korniss, Z. Toroczkai, M. A. Novotny, and P. A. Rikvold

Phys. Rev. Lett.84, 1351~2000!.
@25# G. Tripathy and W. van Saarloos, Phys. Rev. Lett.85, 3556

~2000!.
@26# S. T. Bramwell, P. C. W. Holdsworth, and J.-F. Pinton, Natu

~London! 396, 552 ~1998!.
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