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Large Deviations in Weakly Interacting Boundary
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One-dimensional, boundary-driven lattice gases with local interactions are stud-
ied in the weakly interacting limit. The density profiles and the correlation
functions are calculated to first order in the interaction strength for zero-range
and short-range processes differing only in the specifics of the detailed-balance
dynamics. Furthermore, the effective free-energy (large-deviation function) and
the integrated current distribution are also found to this order. From the for-
mer, we find that the boundary drive generates long-range correlations only
for the short-range dynamics while the latter provides support to an additivity
principle recently proposed by Bodineau and Derrida.
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long–ranged correlations; open systems; boundary driven systems; current fluc-
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1. INTRODUCTION

One-dimensional boundary driven lattice gases are simple model systems
which allow detailed studies of nonequilibrium steady-states. They are rel-
evant in the sense that steady states in experiments are often produced
by choosing appropriate boundary conditions (heating a horizontal layer
of liquid from below being the most widely quoted example) and, fur-
thermore, these models appear to capture some important consequences
of the nonequilibrium drive such as e.g., the generation of long-range
correlations.
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Analytical approaches to the study of large deviations in driven lat-
tice gases proceed along two distinct paths. On one hand, exploiting the
matrix product method, Derrida and coworkers(1–6) have come up with
a series of exact results for the exclusion process (hard-core particles
undergoing symmetric or biased diffusive motion) in one dimension. On
the other hand, in a parallel series of papers, Bertini and coworkers(7–9)

solved some of the same problems employing the formalism of fluctu-
ating hydrodynamics, or, equivalently, the Gaussian stochastic path inte-
gral formalism.(10,11) The results obtained for the probability functional
of a given density profile or for the integrated current distribution are
important since they provide new insights into the properties of nonequi-
librium steady states. Thus it would be highly desirable to establish how
general or universal these results are. In order to investigate this generality
issue, in this paper, we go beyond the specificity of the exclusion pro-
cess, and study the effects of varying the interactions between the parti-
cles as well as varying the microscopic dynamics in boundary driven lattice
gases.

Our main “technical” results are the derivation of the weak inter-
action limits of both the nonequilibrium free energy and the distribu-
tion of the integrated particle current. From the explicit form of the
free energy, we can then deduce the density profile and the correla-
tions (effective interactions) for various interactions (pair or triplet) and
various dynamics (zero-range(12) and short-range (misanthropic(13)) pro-
cesses).

Our main “physical” findings are as follows. The nonlinear density
profiles are found to depend both on the interaction and on the dynam-
ics. Furthermore, the details of the dynamics can change the correlations
from short to long range, and they are shown to be able to change the
sign of the effective interactions. As to the distributions of the integrated
particle current, we verify that, for all the interaction – and dynamics –
combinations we studied, they are in agreement with the recently pro-
posed additivity principle which allows to construct this distribution func-
tion from the knowledge of its first two moments.(14)

We start by introducing the models of interacting lattice gases and
deriving dynamical rules satisfying detailed balance in the absence of
boundary drive (Section 2). Next, we describe on the example of free
particles how the models can be formulated in terms of field theo-
ries (Section 3). Zero-range and short-range (misanthropic) processes are
worked out in Sections 4 and 5, respectively. There we provide explicit
expressions for the effective free energies. Finally, Section 6 is devoted to
a separate treatment of the integrated current distribution.
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2. THE MODEL

2.1. Lattice Gas with Onsite Interaction and Boundary Drive

A d = 1-dimensional lattice gas is considered with hopping dynam-
ics in the bulk and with particle injection and removal at the ends of the
chain. The state of the system �n≡{n0, n1, . . . , nL} is specified by the num-
ber of particles ni = 0,1, . . . ,∞ at lattice sites i (i = 0,1, . . . ,L), and the
interactions are assumed to be local

E(�n)=
L∑

i=0

hi, (1)

where hi =h(ni) is the energy of interactions among particles at the same
site. We shall treat the simplest case of pair interactions, h(n)= εn(n−1).
However, triplet interactions, h(n)= εn(n− 1)(n− 2), will also be consid-
ered occasionally either for demonstrating the effects of competing inter-
actions

hi =h(ni)= ε (±ni(ni −1)+λni(ni −1)(ni −2)) (2)

or for probing the universality of our results with respect to varying the
type of interaction. For λ= 0, we restrict our study to the + sign on the
right-hand side of (2) in order to have stability against collapse of all par-
ticles on a single site, while for λ>0 both signs will be considered.

The dynamics of the system is described in terms of a master equa-
tion for the time evolution of the probability P(�n, t) of a given particle
configuration

∂tP (�n, t)=LDP (�n, t)+LBCP (�n, t), (3)

where the first and second terms on the right-hand side represent the
nearest-neighbor hopping in the bulk and the injection-removal terms
at the boundaries. The bulk term is given through the rate of hopping
wi→i±1(�n) from site i to i±1 in a state �n as

LDP (�n, t) = −
L−1∑

i=0

wi→i+1(�n)P (�n, t)−
L∑

i=1

wi→i−1(�n)P (�n, t) (4)

+
L−1∑

i=0

wi→i+1(�ni+1→i )P (�ni+1→i , t)
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+
L∑

i=1

wi→i−1(�ni−1→i )P (�ni−1→i , t),

where state �ni→j is obtained from �n by moving a particle from i to j .
The injection and removal of particles at the boundaries i= 0 and L are
described by the terms

LBCP (�n, t) = − [
w+

0 (�n)+w+
L (�n)+w−

0 (�n)+w−
L (�n)

]
P(�n, t)

+w+
0 (�n0−)P (�n0− , t)+w−

0 (�n0+)P (�n0+ , t)

+w+
L (�nL−)P (�nL− , t)+w−

L (�nL+)P (�nL+ , t), (5)

where w+
0 (�n), w−

0 (�n), w+
L (�n) and w−

L (�n) are the rates of adding (+) or
removing (−) a particle at site 0 or L in the state �n and, furthermore, the
state �ni+(−) is obtained from �n by adding (removing) a particle at site i.

2.2. Choice of Dynamics

2.2.1. Equilibrium Distribution

In order to specify the dynamics, we shall assume that if the injec-
tion and removal rates are such that there is not net flux (particle or
energy current) through the system then equilibrium is reached. Due to the
onsite nature of the interaction, the equilibrium distribution factorizes, it
becomes the grand-canonical distribution

Peq(�n)=
∏

i

peq(ni), peq(ni)= 1
�

ζni e−hi/T

ni !
, (6)

where T and ζ are characterizing the temperature and fugacity of the
outside heat and particle bath, and � is a normalization factor. In the fol-
lowing, we shall absorb T in the interaction strength ε and the high tem-
perature limit studied below will simply mean that ε is small.

2.2.2. Hopping Rates

The bulk hopping rates may now be defined by making the natural
(though not necessary) assumption that they satisfy detailed balance with
Peq, and that the detailed balance remains valid in the presence of the
boundary drive, as well. This assumption yields the following condition for
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the rate of hopping to the right

wi→i+1(�n)
wi+1→i (�ni→i+1)

= peq(ni −1)peq(ni+1 +1)
peq(ni)peq(ni+1)

= nie
−[E(�ni→i+1)−E(�n)]/2

(ni+1 +1)e−[E(�n)−E(�ni→i+1)]/2
(7)

= nie
h(ni )−h(ni−1)

(ni+1 +1)eh(ni+1+1)−h(ni+1)
(8)

and similar condition with i+ 1 replaced by i− 1 applies for the rate of
hopping to the left. Clearly, the hopping rates are not uniquely determined
by detailed balance. The remaining arbitrariness is not relevant for equilib-
rium but, in the presence of a drive, the steady state properties do depend
on details of the dynamics. In order to have some idea about the impor-
tance of various choices, we shall consider two significantly different rates.

First, the rates will be chosen so that they depend only on the energy
change at the site from which the hopping originates. As can be seen from
(8), a choice satisfying this condition is as follows

w
(zr)
i→i+1(�n)=Dnieh(ni )−h(ni−1), (9)

where D is the “diffusion coefficient” setting the timescale. Dynamics
defined by the above rate is an example of the so called zero range pro-
cesses,(12,15,16) where, in general, the rate is an arbitrary function of ni .
Thus, the first half of our study can be viewed as an investigation of zero
range processes in the presence of a boundary drive.

For a second choice, a more standard hopping dynamics will be used
with rates depending not only on the energy change at the starting posi-
tion of the hopping particle but on the total energy change due to the
hopping. This choice follows from Eq. (7) version of detailed balance

w
(sr)
i→i+1(�n)=Dnie−[h(ni−1)+h(ni+1)−h(ni )−h(ni+1)]/2, (10)

where a superscript in w(sr) signifies the name short range process(13) we
shall use in order to distinguish the resulting dynamics from the zero
range process. An important feature of the short range process is that
by tuning the interactions (0 � ε < ∞, λ = 0) one extrapolates between
the exactly solvable noninteracting limit (ε=0) and the much investigated
and also exactly solvable(1,9,17,18) boundary driven symmetric exclusion
process (ε→∞).
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2.2.3. Boundary Drive (Injection and Removal Rates)

Nonequilibrium drive is introduced into the model through injection
and removal of particles at the ends (j =0 and L) of the chain. The rates
can be set again by referring to detailed balance condition with the baths
attached to the ends of the chain. The baths are assumed to contain non-
interacting particles with the chemical potentials set to produce the appro-
priate injection and removal rates.

For the zero range process, the removal can be imagined as diffusion
into the baths. The rates are independent of the properties of the baths
and given by (9) with D replaced by new (externally controlled) param-
eters β and γ , yielding

w
(zr)−
0 (�n)=γ n0e

h(n0)−h(n0−1), w
(zr)−
L (�n)=βnLeh(nL)−h(nL−1). (11)

Within the picture of the zero range process, the injections (moving a par-
ticle from the bath to the end sites) are independent of state of the end
sites, and thus they are constants α and δ determined by the properties of
the baths

w
(zr)+
0 (�n)=α, w

(zr)+
L (�n)= δ. (12)

The boundary rates for the short range process are determined along
similar lines. The rate of removal follows from (7) and, since the particles
in the baths are not interacting, they are given by

w
(sr)−
0 (�n)=γ n0e

[h(n0)−h(n0−1)]/2, w
(sr)−
L (�n)=βnLe[h(nL)−h(nL−1)]/2 .

(13)

In order to satisfy the detailed balance (7), the injection rates must also
depend on the energy change due to the adding a particle and, using again
that the particles in the bath do not interact, we find

w
(sr)+
0 (�n)=αe[h(n0)−h(n0+1)]/2, w

(sr)+
L (�n)= δe[h(nL)−h(nL+1)]/2. (14)

We have now finished the description of the two models we shall
be concerned with in this paper. Equations (9), (11) and (12) define the
boundary driven zero range process while the rates given by Eqs. (10), (13)
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and (14) define the corresponding short range process. As one can easily
verify, the case of

α

γ
= δ

β
(15)

corresponds to equilibrium with the baths (no drive) and the steady state
distribution is the equilibrium distribution given by Eq. (6). Nonequilibri-
um drive is present when the above equality is violated.

3. PREPARING FOR THE PERTURBATION EXPANSION:

NONINTERACTING PARTICLES

3.1. From the Master Equation to Path Integrals

We shall now perform the mapping of the master equation for the
probability that the system is in the occupation numbers configuration �n
at time t , namely, P(�n; t), to a field theory, where approximation tech-
niques inherited from our experience with equilibrium systems can be
transferred without any difficulty.

We only briefly sketch the procedure, which dates back to Doi,(19) and
has since been rediscovered several times (see ref. 20 for a recent review).
We build up the state vector |Ψ (t)〉=∑

�n P (�n, t)|�n〉 and rewrite the master
equation for P in terms of and evolution equation for |Ψ (t)〉. This equa-
tion can be cast in the form

d|Ψ (t)〉
dt

= L̂0|Ψ (t)〉, (16)

where L̂0 is an evolution operator acting on the microstates |�n〉 indexed
by the local particle numbers. Not suprisingly, the evolution operator L̂0 is
conveniently expressed in terms of the creation and annihilation operators
a

†
i , ai related to each local occupation number ni . For the rates specified

in Section 2.2, but at ε=0, it takes the following form

−L̂0 = D
∑

i

∑

j nn of i

(a
†
i −a†

j )ai

+α(1−a†
0)+ δ(1−a†

L)

+γ (a†
0 −1)a0 +β(a†

L−1)aL. (17)

One can recognize that at ε=0 one is formally dealing with a free boson
hamiltonian.
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The expectation value of an observable A({ni}) is expressed in terms
of the projection state 〈p|= 〈0|e

∑
i ai as follows

〈A〉=〈p|A({a†
i ai})|Ψ (t)〉. (18)

The next step consists in converting the computation of expectation val-
ues of physical observables into the evaluation of a path-integral over two
fields âi (t) and ai(t). After noting that the projection state 〈p| is a coher-
ent state, one is in a position to parallel the same route that allows to
map a quantum many-body hamiltonian onto a field theory. Namely, this
requires to split the evolution operator e−Ĥ t into a product (1− ∆t

t
Ĥ )t/∆t

and to introduce a representation of unity in terms of the coherent states
âi (t), ai(t) associated with the creation and annihilation operators (a†

i and
ai) at each time slice t = 0,∆t,2∆t... This last step leads to averaging a
physical observable A({ni}) in the following way:

〈A(�n)〉=
∫

DâiDai Ã(�a(t)) e−Sε [â,a], (19)

where the integration measure runs over a pair of conjugate complex
fields, that is

∫ DâDa= ∫ DRe(a)DIm(a), and where

S0[â, a] = −
∑

i

ai(t)+
∫ t

0
dτ
[∑

i

(
âi∂τ ai +D

∑

j

(âi − âj )ai
)

+α(1− â0)+γ (â0 −1)a0

+δ(1− âL)+β(âL−1)aL
]

(20)

Note that we have moved the initial condition to t =−∞, in order to sit
directly in the steady-state (initial condition independent). The prescription
to obtain Ã in (19) is as follows: normal order A({a†

i ai}) and then replace
the operators a†

i and ai by the fields one and ai(t), respectively. This yields
Ã(�a(t)).

We have adopted a path-integral formulation because of the large
toolbox that goes with it. The quantity

∫ Dâe−Sε [â,a] is the probabil-
ity of observing a trajectory a(t) in phase space. It is a generalization
of the Onsager–Machlup(21) functional. This will make the expression of
time-dependent quantities (e.g., correlations) straightforward. Besides, it
formally provides us with a sort of dynamical partition function on which
series expansion are conveniently performed. The efficiency of the map-
ping lies in the following observation: at ε = 0, that is for independent
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particles, the Gaussian field theory exactly encodes Poissonian statistics.
Hence the high-temperature (ε→0) expansion that will be performed next
consists in expanding around the Poissonian distribution. For free parti-
cles, as expected, the stationary measure factorizes as a product of local
Poissonian distributions

P(�n)=
∏

i

e−ζi
ζ
ni
i

ni !
. (21)

Hence, for free particles, there is local equilibrium, and the density field
ρi = 〈ni〉 is identical to the fugacity field ζi . This means that the proper-
ties of the system are the same as those that one would obtain in equi-
librium if one imposed a space dependent fugacity ζi . Note that we use
the physical definition of local equilibrium, while mathematicians adopt
the weaker definition of local equilibrium being local stationnarity.(22) The
explicit expression of the fugacity can easily be calculated and is given by,
in the continuum limit, setting x= i/L∈ [0,1]

ζ(x)= ζ0 + (ζ1 − ζ0)x+ ζ0 − ζ1

βγL
(γ x−β(1−x))+O(L−2), (22)

where we have set ζ0 = (α/γ ) and ζ1 = (δ/β) as the fugacities of the reser-
voirs.

The field theory described by S0 is free, which results in a(x, t) being
a nonfluctuating field set to its average expression ρ(x)=ζ(x). This means
in particular that, for ε=0,

∫
DâiDaiÃ({ai(t)})e−S0 = Ã({ρi}), (23)

whatever the observable A.
Another central quantity is the response function of the system to

particle injection: the probability G(x, y; t − t ′) that there is a particle at
x at time t given that there was one at y at time t ′ is given by

G(x, y; τ)= 2
L

∑

n∈Z

sin(nπx) sin(nπy)e−π
2n2τ/L2

. (24)
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The time integrated response function Ĝ(x, y)= ∫∞
0 dτG(x, y; τ) will also

be needed, its expression is given by

Ĝ(x, y) = L [x(1−y)�(y−x)+y(1−x)�(x−y)]
+ 1
γ
(1−x)(1−y)− 1

β
xy

− 1
Lβ2γ 2 (γ x−β(1−x)) (γy−β(1−y))+O(L−2). (25)

In technical terms G is simply the free propagator of the theory.

3.2. Effective Free Energy in the Steady-State

The probability P [{ni}] to observe a given occupation number config-
uration {ni} (or alternatively, a given proifle n(x)) is given by

P [{ni}]=
〈
∏

i

δ(ni −a†
i ai)

〉
(26)

We further define the effective free energy F [n] of the profile n(x) by

F [n]=− lim
L→∞

ln P [n]
L

. (27)

To access F we first pass to the generating function

P̂ [{zi}]=
∑

{ni }

∏

j

z
nj
j P [{ni}] (28)

then work directly on

�[{zi}]=− lim
L→∞

ln P̂ [{zi}]
L

, (29)

which plays the rôle of an effective grand-potential. Our task is to
compute

P̂ [{zi}]=〈e
∑
i (zi−1)ai (t)〉, (30)
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where the brackets denote the weighted path-integral defined by the action
S0. Using again a continuum limit notation, we find, as expected, that

P̂ [{z(x)}]
∣∣∣
ε=0

= eL
∫ 1

0 (z(x)−1)ρ(x) (31)

from which we recover that the a steady-state probability distribution
function is a product of local Poissonian distributions

P [{ni}]=
∏

i

e−ρi
ρ
ni
i

ni !
. (32)

Going to a continuum notation we find

F [n]=
∫ 1

0
dx

[
ρ(x)−n(x)+n(x) ln

n(x)

ρ(x)

]
(33)

in agreement with the mathematically precise construction of the contin-
uum limit.(3) At this stage, the present paragraph looks like a very techni-
cal rephrasing of simple properties. We are now ready, however, to attack
the case of interacting systems.

4. ZERO RANGE PROCESS

The ZRP is simple even in the presence of interactions. This section
should be considered as a tutorial for applying the field theory to a sit-
uation where most of the results can be equally easily derived by other
means.

4.1. Evolution Operator and Field-theory

We will restrict our analysis to the case of pair repulsion, namely

h(n)= εn(n−1). (34)

The master equation can be cast in the form

d|Ψ (t)〉
dt

= L̂ε|Ψ (t)〉, (35)
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where for the rates specified in (9,11,12), the evolution operator L̂ε takes
the following form:

−L̂ε = D
∑

i

∑

j nn of i

(a
†
i −a†

j )e
2εa†

i ai ai

+α(1−a†
0)+ δ(1−a†

L)

+γ (a†
0 −1)e2εa†

0a0a0 +β(a†
L−1)e2εa†

LaLaL. (36)

One can of course recognize that at ε=0 one recovers the free boson ham-
iltonian in Section 3. The action corresponding to L̂ε reads

Sε[â, a]=−∑
i ai(t)+

∫ t
0 dτ

[ ∑

i

(
âi∂τ ai +D

∑

j

(âi − âj )e(e2ε−1)âiai ai

)

+α(1− â0)+γ (â0 −1)e(e
2ε−1)â0a0a0

+δ(1− âL)+β(âL−1)e(e
2ε−1)âLaLaL

]
. (37)

Our calculations will be based on an expansion of Sε to first order in ε

Sε =S0 +2ε
∫
dt

[∑

i,j

(âj − âi )âia2
i +γ (â0 −1)â0a

2
0 +β(âL−1)âLa2

L

]
+O(ε2). (38)

4.2. Effective Free Energy, Profile and Correlations

In order to evaluate

P̂ [z(x)]=〈eL
∫ 1

0 dx(z(x)−1)a(x,t)〉, (39)

we rely on a cumulant expansion. This form is particularly well-suited for
a cumulant expansion, which we write as

P̂ [z(x)]=
〈

exp



L
∑

n�1

1
n!

∫ 1

0

n∏

j=1

(z(xj )−1)W(n)(x1, . . . , xn)+



〉
, (40)

where W(n) is the n-point connected correlation function of the field a at
equal times, in the steady state. In practice it is convenient to introduce
the auxiliary fields φ̄= â−1 and φ=a− ζ . Note that

ρ(x)=〈n(x)〉=〈a(x)〉=W(1)(x) (41)
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is so far undetermined. It will be useful to split W(2) into two pieces,
denoted by W

(2)
loc and W

(2)
NE, corresponding to the local delta correlated

piece in W(2) (namely the diagonal part) and the genuinely nonequilibrium
contribution, respectively. In order to obtain W(2) one first directly com-
putes the field connected correlation function to leading order in ε

〈
φ(x1, t1)φ(x2, t2)

〉

c
= 2ε
L

∫ ∞

0
dt

∫ 1

0
dy
(
ζ(y)2(∂2

yG(x1, y; t1 − t)G(x2, y; t2 − t)
+G(x1, y; t1 − t)∂2

yG(x2, y; t2 − t))
)
, (42)

where the usual contractions between a bared and a nonbared field were
carried out. This yields

W(2)(x, y)=W(2)
loc (x, y)=−2εζ 2(x)δ(L(x−y)) (43)

as if local equilibrium would hold (to this order in ε at least). Note that
the time dependent correlations are obtained by the same token. The pro-
file for the ZRP reads

ρ(x)= ζ(x)−2εζ(x)2 (44)

and it is nonlinear, as expected from general arguments.(23)

Let us compare with what we would obtain in equilibrium for the dis-
tribution (6). The density–fugacity relationship and the local particle num-
ber fluctuations would read

ρ=〈n〉= ζ −2εζ 2, 〈n2〉c= ζ −4εζ 2. (45)

A quick glance at (43) and (44) shows that the zero range process, to first
order in ε and to leading order in L at least, appears to be consistent
with local equilibrium. The existence of local equilibrium can actually be
proved in general, independently of the explicit form of h(n) provided the
transition rates are given by the expressions (9), (11) and (12). At the field
theory level, it follows by inspection of the corresponding Feynman dia-
grams which indicates that local equilibrium holds to all orders in ε due
to the fact that the interaction arising from diffusion in the bulk is pro-
portional to the Laplacian of the response field. Hence, by Wick’s theo-
rem, the interactions are proportional to the Laplacian of the propagator
G which is a delta function in space. Thus spatial correlations cannot be
built up and the steady state measure remains a product measure just as
is the case for noninteracting particles (21). It should be noted, that the
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existence of local equilibrium can be more simply proved(24) by just substi-
tuting product measure into the steady state master equation and deriving
an equation for the local fugacity (22).

For ZRP the effective free energy can thus directly be obtained from
the equilibrium distribution (6) in which one has substituted the local
fugacity by its expression in terms of the local average density.

5. SHORT RANGE PROCESS

5.1. Evolution Operator and Action

As announced in Section 2.2, we now wish to study a different set of
dynamical rules, those of the short-range process. For definiteness, we con-
fine the present paragraph to the case of on-site pair repulsion, namely,
h(n)= εn(n− 1). One of the reasons for this choice is that, part from the
ε= 0 limit which reduces to free particles, the ε→ ∞ limit exactly cor-
responds to the Symmetric Exclusion Process (SEP). Given that the scal-
ing variable that appear in our expansions is ερ, we may have the hope to
connect our results with the low density behavior of the results obtained
for the SEP. Again, for this dynamics, it is possible to write the master
equation in the form of an imaginary time Schrödinger equation with an
evolution operator

−L̂ε = D
∑

i

∑

j nn of i

(a
†
i −a†

j )e
εn̂i−εn̂j ai

+α(1−a†
0)e

−εn̂0 + δ(1−a†
L)e

−εn̂L

+γ (a†
0 −1)eεn̂0a0 +β(a†

L−1)eεn̂LaL. (46)

In practice our analysis will be limited to the first nontrivial order in ε,
and the corresponding action reads

Sε = S0 + ε
∫
dt

[∑

i,j

(âj − âi )(âiai − âj aj )

−α(1− â0)â0a0 +γ (â0 −1)â0a
2
0

−δ(1− âL)âLaL+β(âL−1)âLa2
L

]
. (47)

The expanded action (47) will be the starting point of our computations.
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5.2. Effective Free Energy for Onsite Pair Repulsion

As explained earlier, we shall focus on the generating function of the
probability distribution

P̂ [z(x)]=
〈
eL

∫ 1
0 dx(z(x)−1)a(x,t)

〉
. (48)

Note that if one would start from a hamiltonian of the form

h(n)= ε
∑

p�2

gpn(n−1)...(n−p+1), (49)

where the gp’s are order one constants, then the cumulant expansion
would require to go as far as W(p), to leading order in ε. Of course, at
finite ε, all cumulants are needed. In the present case of onsite pair repul-
sion, namely with h(n)= εn(n− 1) we are thus left with the computation
of the first and second cumulant of a(x, t). We find that ρ(x)= 〈a(x, t)〉
has the following expression

ρ(x) = ζ(x)−2εγ (ζ0 + ζ(0))ζ(0)Ĝ(x,0)−2εβ(ζ1 + ζ(1))ζ(1)Ĝ(x,1)
− ε

L

∫ 1

0
dy ζ(y)∂yζ(y)∂yĜ(x, y)

= (ζ0 −2εζ 2
0 )(1−x)+ (ζ1 −2εζ 2

1 )x+ ε(ζ1 − ζ0)
2x(1−x) (50)

+ζ0 − ζ1

βγL

(
γ x
(

1− ε[ζ0(3−2x)+ ζ1(2+2x)]
)

−β(1−x)
(

1− ε[ζ1(1+2x)+ ζ0(4−2x)]
))

+O(L−2).

It may be seen that

ρ(x)= ζ(x)−2εζ(x)2 − ε(ζ0 − ζ1)
2x(1−x)+O(L−1) (51)

thus showing that there is no local equilibrium in the short range process.
The density–density correlation function C(2)(x, y)=〈n(x)n(y)〉c takes the
simple form

C(2)(x, y)= (ζ(x)−2εζ(x)2)δ(L(x−y))+W(2)(x, y) (52)
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with

W(2)(x, y) = −2εζ(x)2δ(L(x−y)) (53)

− ε

L
(ζ0 − ζ1)

2 [x(1−y)�(y−x)+y(1−x)�(x−y)] ,

which now features a nonzero long range W(2)
NE piece

W
(2)
NE(x, y)= − ε

L
(ζ0 − ζ1)

2 [x(1−y)�(y−x)+y(1−x)�(x−y)] . (54)

It is possible to return to the effective free energy

F [n(x)] =
∫ 1

0
dx

[
ρ(x)+ ερ(x)2 −n(x)+n(x) ln

n(x)

ρ(x)+2ερ(x)2
+ εn(x)(n(x)−1)

]

−1
2

∫ 1

0
dx dy

(
n(x)

ρ(x)
−1

)
W
(2)
NE(x, y)

(
n(y)

ρ(y)
−1

)
. (55)

The first brackets on the right-hand side of (55) corresponds to a sys-
tem in local equilibrium with respect to an effective fugacity ρ+ 2ερ2; it
already appeared for the ZRP. The integral in the second line illustrates
the nonlocal long-range nature of the effective interactions in a nonequi-
librium steady-state (W(2)

NE being negative, the corresponding contribution
is positive, which expresses the repulsive nature of the effective interac-
tions). The fluctuations of the total number of particles read

∆N2 =∆N2
loc. eq. −L

ε

12
(ρ0 −ρ1)

2, (56)

where ∆N2
loc.eq.denotes the fluctuations of a systems in local thermal equi-

librium with the same fugacity profile (such as the ZRP). The decrease of
the global fluctuations is yet another consequence of the development of
long-range anticorrelations. As a coincidence, note that setting in (56) ε=
1 yields exactly the symmetric exclusion process expression for this quan-
tity.(3,17,18)

5.3. Effective Free Energy with Onsite Triplet Repulsion

Now we wish to explore the effect of varying the type of interaction
by studying the case

h(n)= εn(n−1)(n−2), (57)
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which assigns an energy cost to the site proportional to the number of
triplets of particles are present at the site. We find that the profile is
given by

ρ(x)= ζ(x)−3εζ(x)3︸ ︷︷ ︸
local eq.

−εx(1−x)(ζ0 − ζ1)
2(ζ0 + ζ1 + ζ0(1−x)+ ζ1x), (58)

while the correlation function of the field reads

W(2)(x, y) = −6εζ(x)3δ(L(x−y))

−12ε
L
(ζ0 − ζ1)

2(ζ0 + ζ1) [x(1−y)�(y−x)+y(1−x)�(x−y)]

+12ε
L
(ζ0 − ζ1)

3w(x, y). (59)

In (59) the extra function w(x, y) has the explicit expression

w(x, y)= 16
π4

′∑

n,m�1

1
m2 +n2

[
1

(m+n)2 − 1
(m−n)2

]
sin(nπx) sin(mπy), (60)

where
∑′

n,m�1
means a summation over n and m of opposite parities. We

have not been able to come up with a closed expression for w (though one
might exist). The function w vanishes at (1/2,1/2) and does not contrib-
ute to the fluctuations of the number of particles. Figure (1) shows a two-
dimensional plot of w which reveals that w(x, y) conveys anticorrelations
for x, y in the vicinity of the reservoir with the higher density, while posi-
tive correlations develop close to the reservoir imposing the lower density.
The function w stands for the deviation of the long-range component of
the density correlation function with respect to the pair interaction case
(whether at small ε as in (53), or at ε→∞ as computed by Spohn.(17)) It
is worth stressing that, to our knowledge, no microscopic model had, up
to now, shown such strong deviations.

The fluctuations of the total number of particles now read

∆N2 =∆N2
loc. eq. −2Lε(ζ0 − ζ1)

2(ζ0 + ζ1), (61)

where∆N2
loc. eq. denotes the fluctuations of a systems in local thermal equilib-

rium with the same fugacity profile (such as the ZRP). In the present case the
third cumulant is of order ε as well, and it has the formal expression
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Fig. 1. Plot of w(x, y) (see Eq. (60)) as a function of x, y ∈ [0,1].

W(3)(x1, x2, x3) = −6εζ(x1)
3δ(L(x1 −x2))δ(L(x2 −x3)) (62)

−6ε
L

∫
dτ dz(ζ0(1− z)+ ζ1z)G(x1, z; τ)G(x2, z; τ)G(x3, z; τ).

Denoting by W(3)
NE the function appearing in the second line on the right-

hand side of Eq. (62) allows to write the effective free energy in the form

F [n(x)] =
∫ 1

0
d

[
ρ+ ερ3 −n+n ln

n

ρ+3ερ3
+ εn(n−1)(n−2)

]

−1
2

∫ 1

0
dx dy

[
n(x)

ρ(x)
−1

]
W
(2)
NE(x, y)

[
n(y)

ρ(y)
−1

]

− 1
3!

∫ 1

0
dx dy dz

(
n(x)

ρ(x)
−1

)(
n(y)

ρ(y)
−1

)(
n(z)

ρ(z)
−1

)
W
(3)
NE(x, y, z). (63)

As one can see, the triplet repulsion generates not only two-body long
ranged repulsive interactions, but also three body interactions, repulsive as
well. This establishes a correspondence between the microscopics (the pre-
cise form of h(n)) and the effective interactions generated by the boundary
drive.

5.4. Competing Interactions

Suppose we now focus on a local interaction energy of the form

h(n)= ε [−n(n−1)+λn(n−1)(n−2)] , λ>0, (64)
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where the first term on the right-hand side, which favors pair conden-
sation, is competing with the second term on the right-hand side which
assigns a relative energy cost λ to the piling up of three or more particles.
To first order in ε the density correlation function is merely a linear com-
bination of that obtained for the pair and triplet interactions, namely

C(2)(x <y)= ε

L
(ζ0 − ζ1)

2
[
(1−12λ(ζ0 + ζ1))x(1−y)+12λ(ζ0 − ζ1)w(x, y)

]
.

(65)

We can clearly see that, at sufficiently low densities, positive correlations
develop, thus providing a microscopic counterexample to the general belief
that the driving of a current builds up anticorrelations (note, however, that
Spohn(17) had left this possibility a priori open).

6. INTEGRATED CURRENT DISTRIBUTION

Let Q(t) be the net number of particles which have jumped from
the left reservoir into the system over the time interval [0, t ] (counted
positively for an actual jump from the reservoir into the system, and
negatively for a jump out of the system to the reservoir). The physical
motivations for studying the properties of Q are detailed by Lebowitz
and Spohn(25) who showed that this quantity, defined for a Markov pro-
cess (our boundary driven lattice gas with stochastic dynamics) plays a
role analogous to the phase space contraction rate for dynamical systems
(and for which Gallavotti and Cohen(26) proved their fluctuation theorem).
Below, we shall be concerned with the calculation of the distribution of
Q(t).

6.1. Free Particles

Following the procedure described in refs. 2 and 6, we construct a
master equation for P({ni},Q, t), the probability that the system is in state
{ni} and with Q(t)=Q by explicitly separating those moves in phase space
that increase Q by one, decrease it by one, or leave it unchanged. Intro-
ducing a state vector |ψ(Q, t)〉=∑

{ni } P({ni},Q, t)|{ni}〉, we are left with
an evolution equation of the form

d|ψ(Q, t)〉
dt

= (L̂(1)+ L̂(−1)+ L̂(0))|�(Q, t)〉, (66)

where the operators L̂(±1) increase/decrease Q by one, and where L̂(0)
leave Q unchanged. We are interested in the distribution function of Q(t)
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in the steady state, over large time intervals

p(Q, t)=〈p|ψ(Q, t)〉 (67)

or, more conveniently, its generating function, namely,

p̂(z, t)=
+∞∑

Q=−∞
zQp(Q, t). (68)

It turns out that the generating function can conveniently be expressed in
terms of a path-integral

p̂(z, t)=
∫

DâiDai e−S0,z[â,a], (69)

where, for noninteracting particles

S0,z[â, a]=−
∑

i

ai(t)+
∫ t

0
dτ
[ ∑

i

(
âi∂τ ai +D

∑

j

(âi − âj )ai
)

+ α(1− zâ0)+γ (â0 − z−1)a0

+ δ(1− âL)+β(âL−1)aL
]
. (70)

The action S0,z does not describe a stochastic process (unless z= 1 for
which it reduces to S0). However, it may be readily seen that

p̂(z, t)=〈e
∫ t

0 dt (α(z−1)−γ (1−z−1)a0(t))〉z, (71)

where the brackets 〈..〉z now denote an average with respect to the process
governed by S0 in which α is formally replaced with αz. Using that a0(t),
for free particles, is a nonfluctuating field with expression taken from (22)
by changing α into αz

a0(t)= ζ0z− zζ0 − ζ1

γL

[
1− ε(4ζ0z+ ζ1)

]
, (72)

we find that, in the long time limit

lim
t→∞

ln p̂(z, t)
t

=µ(z)= 1
L

z−1
z
(ζ0z− ζ1). (73)
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It is a posteriori clear why subleading finite size corrections had to be kept
all along. The function µ(z) is the generating function for the cumulants
of Q. It is worth commenting on two remarkable, yet expected, properties
of µ(ζ0, ζ1, z). Namely, if we exchange the roles of the reservoirs, the dis-
tribution of Q is turned into that of −Q, hence

µ(ζ0, ζ1, z)=µ(ζ1, ζ0, z
−1). (74)

But it also satisfies the Gallavotti–Cohen property (see refs. 6 and 25 for
a readable proof), namely

µ(ζ0, ζ1, z)=µ
(
ζ0, ζ1,

ζ1

ζ0z

)
, (75)

which is best known when rephrased as follows. Let π(q =Q/t) be the
large deviation function related to p(Q, t)

π(q)= lim
t→∞

ln p(qt, t)
t

. (76)

Besides, π(q) appears as the Legendre transform of µ(z) with respect to
ln z

π(q)=maxz{µ(ζ0, ζ1, z)− ln zq} (77)

hence

lim
t→∞

1
t

ln
p(Q, t)

p(−Q, t) =π(q)−π(−q)= ln
ζ0

ζ1
q. (78)

Of course this can a posteriori be verified on the explicit expression of
π(q)

π(q) = q

2
+
√
q2

4
+ ζ0ζ1 + ζ0ζ1

(q/2)+
√
(q2/4)+ ζ0ζ1

−(ζ0 + ζ1)−q ln

[√
(q2/4)+ ζ0ζ1 + q

2

ζ0

]
, (79)

which is plotted on Fig. (2).
The Gallavotti–Cohen theorem was shown(25,27) to hold under quite

general conditions for nonequilibrium steady-states resulting from Mar-
kovian dynamics and we shall further comment upon it in Section 6.5.
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Fig. 2. Plot of π(q) in Eq. (79) for free particles with ρ0 = 1 	 ρ1. Note the strong
asymmetry of π .

6.2. Short Range Process with Pair Repulsion

We now repeat the strategy outlined in the previous paragraph, but
for the interacting case, with the short range process dynamics. We split
the evolution operator Ĥε into three pieces, each describing moves that
increase, decrease or leave Q unchanged. Then we pass to a path integral
in terms of which we find

p̂(z, t)=
∫

DâiDai e−Sε,z[â,a]. (80)

Having found Sε,z we bring the calculation of p̂ to that of a given
observable with respect to the original stochastic process in which α is
replaced with αz

p̂(z, t)=
〈
exp

(
−
∫ t

0
dt
[
α(1− z)(1− εâ0a0)+γ (1− z−1)a0(1+ εâ0a0)

])〉

z

.

(81)

In order to evaluate the latter expectation value to leading order in ε we
rely on a cumulant expansion. Introducing the variable

ω(ζ0, ζ1, z)= z−1
z

[(
ζ0 − εζ 2

0

)
z−

(
ζ1 − εζ 2

1

)
− ε (z−1) ζ0ζ1

]
, (82)
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we find that

Lµ=ω− ε

3
ω2. (83)

It is remarkable that the intermediate variable ω itself satisfies the two
invariance properties that µ is known to fulfill. Namely, the function
ω(ρ0, ρ1, z) verifies the left–right symmetry

ω(ζ0, ζ1, z)=ω(ζ1, ζ0, z
−1) (84)

and the Gallavotti–Cohen property

ω(ζ0, ζ1, z)=ω
(
ζ0, ζ1,

ζ1

ζ0z

)
. (85)

That ω verifies (74) and (75) implies directly that µ possesses the same
invariance properties, as already identified in the SEP.(6) One invariance
property that our result does not possess, in constrast to,(6) is the parti-
cle-hole symmetry.

The effective small parameter of the expansion is ερ, where ρ is the
typical density, hence our small ε expansion is seen to coincide with a
low density expansion of the exact result obtained at ε→ ∞ by Derrida
et al.(6),

Lµ=ω− 1
3ω

2 + 8
45ω

3 +O(ω4) (86)

with

ω= z−1
z

[
ζ0

1+ ζ0
z− ζ1

1+ ζ1
− (z−1)

ζ0

1+ ζ0

ζ1

1+ ζ1

]
. (87)

A natural question that arises next is how universal the result obtained in
the exact calculation(6) is? How sensitive is it to varying the microscopic
interactions. In order to sort out this issue we have performed a similar
analysis for repulsive triplet interactions, with short range dynamics.
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6.3. Short Range Process with Triplet Repulsion

In the same spirit as in the previous paragraph, we express the
generating function p̂(z) as the expectation value of an exponential
observable with respect to the lattice gas measure in which α is replaced
with αz. We rely again on a cumulant expansion, and after a rather
tedious calculation, we arrive at the following results. We now define the
auxiliary variable ω by

ω(ζ0, ζ1, z) = z−1
z

[
(ζ0 − εζ 3

0 )z− (ζ1 − εζ 3
1 )− ε(z−1)ζ0ζ1(ζ0 + ζ1)

]

×
[

1− ε

2
z−1
z
(ζ0z− ζ1)(ζ0 + ζ1)

]
, (88)

which also obeys (74) and (75). We find that

Lµ=ω− ε

10
ω3 +O(ε2). (89)

This expression unambiguously points at a different distribution
function for the integrated current. It further allows to connect the micros-
copics – the triplet repulsion – with the final form of µ. A p-body inter-
action would yield a first correction to µ of the form ωp. Unfortunately
we have not been able to come by a physical interpretation for the inter-
mediate quantity ω.

6.4. Zero Range Process with Pair Repulsion

Finally, we examine the case of the ZRP with pair repulsion, for
which we know that the steady state distribution follows local equilib-
rium. It is then sufficient to start from the equilibrium expression for the
free process in which one has subsituted the current with its appropriate
expression. It is not hard to see, through a direct evaluation, that

〈Q〉
t

=α−γ 〈n0e
2ε(n0−1)〉= ζ0 − ζ1

L


((
ρ0 −2ερ2

0

)− (
ρ1 −2ερ2

1

))

L
, (90)

which leads us to

Lµ(ζ0, ζ1, z)= z−1
z

(
ζ0z− ζ1

)
 z−1
z

((
ρ0 −2ερ2

0

)
z− (

ρ1 −2ερ2
1

))
. (91)
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This form is identical to that predicted by Bodineau and Derrida(14))
for zero range processes. The Gallavotti–Cohen relation, in our particular
case, takes the form

µ(ζ0, ζ1, z)=µ
(
ζ0, ζ1,

ζ0

ζ1z

)
, (92)

which again matches the predictions of Bodineau and Derrida.(14)

6.5. Illustration of the Additivity Principle

To conlude this section, we would like to illustrate how our explicit
results fit into the general framework provided by Bodineau and
Derrida.(14) In particular, they have deduced, from a postulated additiv-
ity principle, a general expression for the integrated current distribution,
from the sole knowledge of 〈Q〉(ρ0, ρ1) and 〈Q2〉c(ρ0, ρ1). One of the con-
sequences of their findings is a direct computation of the analog, in the
Gallavotti–Cohen theorem, of the “entropy production rate” (as formally
defined by Lebowitz and Spohn(25)) in these driven stochastic lattice gases.
Defining, as in ref. 14

D(ρ)= 1
t

∂

∂ρ0
〈Q〉(ρ0, ρ)

∣∣∣
ρ0=ρ

, σ (ρ)= 〈Q2〉c(ρ, ρ)
t

(93)

they have shown that

µ(z)=µ
(

2
∫ ρ0

ρ1

dρ
D(ρ)

σ (ρ)

1
z

)
. (94)

To leading order in ε, it is straighforward to see from (91) that, for the
ZRP

D(ρ)=1, σ (ρ)=2ζ 
2(ρ−2ερ2). (95)

For the short range process,

for pair interaction: D(ρ)=1+2ερ, σ (ρ)=2ρ (96)

for triplet interaction: D(ρ)=1+6ερ2, σ (ρ)=2ρ
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thus leading, in both cases, to

µ(z)=µ
(
ζ0

ζ1z

)
. (97)

Hence formula (94) is in perfect agreement with our explicit computations,
not only for zero-range processes, but also for the non trivial short-range
processes with pair or triplet repulsion. The agreement with the results of
ref. 14 can be seen to extend to the full expression of µ(z).

7. FINAL REMARKS

We have shown on specific examples that driving a system out of
equilibrium magnifies the differences in the underlying microscopic dynam-
ics. Not only the density profiles are different, but some dynamical rules
lead the system to a state of local equilibrium, while others let it develop
long-range effective interactions. In all cases, however, our explicit results
for the integrated current distribution provide support for the postulated
additivity principle of Bodineau and Derrida.(14)

We should emphasize that the above results have been worked out
by setting up a formalism, based on path integrals, which provides an
alternative both to exact solutions and to the fluctuating hydrodynam-
ics approach. The path-integral formalism fills a gap in the sense that it
allows us to go directly from a microscopic formulation to macroscopic
properties and, furthermore, it allows formulating approximate approaches
in nonequilibrium settings. Most of our results rely on a high temperature
or virial like expansion, thus providing a intuitive parallel to the standard
techniques of equilibrium statistical mechanics.

We believe that several lines could now be explored. First, the present
toolbox allows us to investigate the effect of additional space dimensions at
little extra formal cost (even though calculations will undoubtedly be more
involved). This would help to clearly isolate those features which are char-
acteristic of one-dimensional systems from those that generalize to more
realistic ones. An interesting problem arising in higher dimension is the
interplay between longitudinal and transverse current fluctuations. Second,
most of the quantities studied in the present work are time-independent, but
the present toolbox makes possible the sudies of time-dependent quantities
such as the time-dependent profile or effective free energy. Third, a natural
extension of our formalism would consist of establishing nonperturbative
results in ε. Much in the same way as in liquid state theory, infinite fami-
lies of appropriately chosen Mayer diagrams can be summed up, and one
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could investigate which types of Feynman diagrams will contribute in build-
ing up the strongly nonlocal nature of the free energy functional found in
ref. 1. Fourth, there is a class of problems, such as asymmetric exclusion
or phase transitions in nonequilibrium steady-states, that cannot be tackled
by the fluctuating hydrodynamics approach: there we expect that the field
theoretic framework will be instrumental in applying renormalization group
techniques. Finally, extending our results for more complex geometries with
more than two particle reservoirs, as suggested in ref. 14 or done in refs. 28
and 29 should allow us to identify the universal emerging features and to
bring the theory closer to experiments.
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