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The effects of an external electric field on the formation of Liesegang patterns are investigated. The
patterns are assumed to emerge from a phase separation process in the wake of a diffusive reaction
front. The dynamics is described by a Cahn–Hilliard equation with a moving source term
representing the reaction zone, and the electric field enters through its effects on the properties of the
reaction zone. We employ our previous resultsfI. Bena, F. Coppex, M. Droz, and Z. Rácz, J. Chem.
Phys. 122, 024512s2005dg on how the electric field changes both the motion of the front, as well
as the amount of reaction product left behind the front, and our main conclusion is that the number
of precipitation bands becomes finite in a finite electric field. The reason for the finiteness in case
when the electric field drives the reagents towards the reaction zone is that the width of consecutive
bands increases so that, beyond a distance,+, the precipitation is continuoussplug is formedd. In
case of an electric field of opposite polarity, the bands emerge in a finite interval,−, since the
reaction product decreases with time and the conditions for phase separation cease to exist. We give
estimates of,± in terms of measurable quantities and thus present an experimentally verifiable
prediction of the “Cahn–Hilliard equation with a moving source” description of Liesegang
phenomena. ©2005 American Institute of Physics. fDOI: 10.1063/1.1899644g

I. INTRODUCTION

Precipitation patterns named after Liesegang1,2 have
been investigated for more than 100 years. Their discovery
came from work on photoemulsions,1 and the interest in
these patterns was sustained during all these years by recog-
nizing that the underlying dynamics had connections to
rather diverse physicalse.g., near-equilibrium crystal
growth3d, geologicalsformation of agates4d, chemicalspat-
tern formation in reaction-diffusion systems5d, and more ex-
otic se.g., aggregation of asphaltene in crude oil6d phenom-
ena. From theoretical point of view, the Liesegang patterns
enjoyed continuing attention since attempts at their explana-
tions were testing the theories of precipitation processes7–9

sfor a recent overview see Ref. 10d and, furthermore, the
phenomenon was considered as a highly nontrivial example
of pattern formation in the wake of a moving front.11,12

The origin of recent attention to Liesegang patterns is
the hope that the phenomena may be relevant in engineering
of mesoscopic and microscopic patterns.13–15The novelty of
the idea is that, in contrast to the “top-down” processing
sremoving material in order to create a structured, the Liese-
gang dynamics provides a “bottom-up” mechanism where
the structure emerges from a bulk precipitation process.14 Of
course, many obstacles will have to be overcome before such
a strategy succeeds, the main one being the problem of con-
trolling the pattern generated by a reaction-diffusion process.
It is known experimentally, with the results formulated in the
Matalon–Packter law,16 that some degree of control may be
exercised through the appropriate choice of the concentra-
tions of the inner and outer electrolytes participating in the
process. It is also known, but much less understood, that the

gel strongly influences the resulting patterns.17 Furthermore,
recent experiments15 indicate that the shape of the gel may
be used in designing appropriate geometry in the precipita-
tion patterns.

The methods of control described above are somewhat
rigid since the parameters cannot be changed during the pro-
cess while, ideally, one requires an easily tuned, flexible ex-
ternal field for control. In principle, the electric field provides
such an external control and, indeed, there is experimental
evidence18–30 that an electric field significantly alters the
emerging patternssee Fig. 1 for a schematic experimental
setupd. Unfortunately, these experiments give only a qualita-
tive picture about the effects of the electric field, and the
theory is even less developed.20,27–29,31

Our aim in this paper is to improve the theoretical de-
scription of electric field effects and to bring it up to the level
of quantitative predictions. We have shown recently32 that
there are problems with previous attempts20,27–29,31which in-
corporate the electric field by assuming that it results in the
drift of the reacting ions as well as in the drift of the reaction
zone. Treating the background ions properly by using the
electroneutrality condition, we found that the main effect of
the field is that the amount of reaction product left behind the
reaction zone increasessdecreasesd linearly in space depend-
ing whether the field drives the reacting ions towardssawayd
from the reaction zone. Building on these results, we shall
show below using the “Cahn–Hilliard equation with moving
source” model,33,34how the field affects the precipitation pat-
tern itself.

The choice of the model must be explained since a cen-
tury of research did not lead to a generally accepted theory of
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this pattern forming process. The reason is perhaps the com-
plexity of the interplay between the motion of the reaction
front and the precipitation dynamics of the reaction product
sand the intermediate reaction steps that may also be
presentd, thus preventing the creation of a single model en-
compassing all the possibilities. The approach we
consider33,34 simplifies the situation by first treating the ki-
netics of reaction and the motion of the reaction front.35–37

Then, the reaction product generated by the front is inserted
as a source in the phase separation process described by the
Cahn–Hilliard equation.38–41 This theory has been
shown33,34,42–44to generate Liesegang patterns which satisfy
the time and spacing laws45,46 spatterns emerging from most
other theories do the samed, the Matalon–Packter law16 ssig-
nificantly fewer theories can produce such patternsd, and the
width law42,47,48sno other theory yields this law since none
of them has an underlying thermodynamic for setting the
values of steady-state concentrationsd. This theory is also
distinct from previous approaches in that it has a minimum
number of parameters which can be related to experimentally
measurable quantities and thus the theory can give quantita-
tive predictions.42 We should also note that, depending on the
motion of the front, the phase separation process may occur
at the position of the front or well behind the front34 thus the
model can also describe the limit of small imposed
gradients.49

In order to summarize the results obtained from the
above theory for the case of external field present, let us first
describe the setupsFig. 1d more precisely. A chemical re-
agentB;sB+,B−d, called inner electrolyte, is dissolved in a
gel matrix inside a part of the small central cylindersfrom
point “0” to the right on thex axisd. A second reactantA
;sA+,A−d souter electrolyted, of much higher concentration,
is brought in contact with the gelsat point 0 on thex- axisd.
The two reservoirs of electrolytesA and B are providing

constant concentrationsa0 andb0 sa0@b0d of the reagents at
the two ends of the central cylinder. The outer electrolyteA
diffuses into the gel and reactssA−+B+→Cd with the inner
electrolyteB. The reaction front moves to the right and, un-
der appropriate conditions, the reaction productC precipi-
tates, and one observes the emergence of bands of precipitate
perpendicular to the direction of motion of the front. The
reservoirs of electrolytesA andB are kept at a constant po-
tential differenceU=VB−VA, which corresponds to an aver-
age applied field intensityE=−U /L inside the central cylin-
der of lengthL. Let us note that throughout this paper we
shall callforward electric fielda field that drives the reacting
ions towards the reaction zone; in our setup this corresponds
to a positive tensionU.0, or to E,0. On the contrary, a
field thatworks against the reacting ions reaching the reac-
tion zonewill be referred to as areverse electric field, which
in our setup corresponds to a negative tensionU,0, or to
E.0.

Without the external fieldsU=0d, the positions of the
bandssxn, measured from the initial contact of the reagentsd
form a geometric series,xn,s1+pdn, where 1+p or p.0 is
called the spacing coefficient. For small fieldssuEu= uUu /L
&2 V/m, for which one has a “sufficient” number of bands,
i.e.,ù20d, the band spacing can still be described as geomet-
ric series and our first result pertains to the dependence of the
effective spacing coefficient on the applied field,p
=psU /Ld. We call it effective spacing coefficient because
these geometric series are finite as evidenced by the results
for higher fields. The reason for the finite number of bands
for electric field that drives the reagents towards the reaction
zonescalled forward field in the followingd is that the width
of consecutive bands increases faster than the distance be-
tween the bands. Thus one finds that the precipitation is con-
tinuoussplug is formedd beyond a distance,+. The number
of band is also finite and they appear in an intervalf0,,−g for
the case of a field of reverse polarity. The reason for finite-
ness, however, is different. In case of a field working against
the reacting ions reaching the reaction zone, the amount of
reaction product generated in the reaction zone decreases
with time and the conditions for phase separation cease to
exist. The quantities,+ and ,− are easily accessible in ex-
periments, and our main resultsapart from qualitative obser-
vationsd is that we give an estimate of them in terms of
measurable quantities. Thus we provide a way of designing
the spatial range of the emerging pattern. In view of the
competing theories of Liesegang phenomena, this also gives
yet another way of discovering which is the correct descrip-
tion.

Below we present the details in the following order.
First, the Cahn–Hilliard equation and the changes in the
source term in the presence of an electric field are discussed
sSec. IId. Next sSec. IIId, the results of numerical solution of
the partial differential equations and qualitative arguments
concerning the characteristics of the Liesegang patterns for a
forward applied field are presented. The case of the reverse
polarity is described in Sec. IV. The comparison with experi-
ments is discussed in Sec. V, while the conclusions and per-
spectives are given in Sec. VI. Finally, a discussion on the

FIG. 1. Schematic representation of the system under study. The inner elec-
trolyte BsB+,B−d is dissolved in a gel matrix inside a part of the small
central cylindersfrom point 0 to the left on thex axisd. The outer electrolyte
AsA+,A−d, of much higher concentration, is brought in contact with the gel
sat point 0 on thex axisd. The two reservoirs of electrolytesAsA+,A−d and
BsB+,B−d assure constant concentrationsa0 andb0sa0@b0d of the ions at the
two ends of the central cylinder. The outer electrolyte ions diffuse into the
gel, where the reactionA−+B+→C takes place.sThe background ionsA+

andB− do not react.d The reaction front moveswithout convectiontowards
the right, and precipitation bands—i.e., the alternation of high-density-C
regionssshaded areasd and low-density-C regions—emerge inside the cylin-
der in the wake of this moving reaction front. A tensionU=VB−VA is ap-
plied between the ends of the central cylinder of lengthL, which corre-
sponds to an average applied field intensityE=−U /L. A positive tension
U.0 scorresponding toE,0d drives the reacting ions towards the reaction
zone sforward electric fieldd. A negative tensionU,0 scorresponding to
E.0d works against the reacting ions reaching the reaction zonesreverse
electric fieldd.
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choice of the parameters of our theoretical model, as inferred
from experimental data, can be found in the Appendix.

II. PHASE SEPARATION AND DYNAMICS OF THE
REACTION PRODUCT C IN THE PRESENCE OF AN
EXTERNAL ELECTRIC FIELD

There is experimental evidence that the Liesegang pat-
tern is an alternation of high-densitych and low-densitycl

regions of the precipitateC. Thus, the reaction product phase
separates behind the reaction front, and since this takes place
on a macroscopic scale, its dynamics can be represented
through an extension of the Cahn–Hilliard equationsin other
contexts, this is the equation of modelB of critical
dynamics41d. This equation, however, requires the knowledge
of the free-energy densityF of the system; note that for a
homogeneous system,F has to present two minima in order
to accommodate the two equilibrium states of highch and
low cl densities. The simplest form ofF having this property
and containing the minimum number of parametersswhich,
moreover, guarantees the stability of the system against
short-wavelength fluctuationsd is the Ginzburg–Landau free-
energy density

Ffmg = − 1
2«m2 + 1

4gm4 + 1
2ss=md2. s1d

Here we introduced the “reduced” concentration

msx,td =
csx,td − sch + cld/2

sch − cld/2
s2d

that varies between −1 and +1 when the concentration of the
product C varies betweencl and ch. Note the underlying
assumption of the one-dimensional character of the system,
i.e., the fact that all the relevant parameters are onlyx de-
pendent, that is well justified for the experimental setup in
Fig. 1. The parameters« , g, ands are system and tempera-
ture dependent, withsid «.0 ensuring that the system is in
the phase separating regimesi.e., the temperature is smaller
than the critical oned; sii d g=« in order to ensure that the
minima of the free energy correspond tom= ±1 sthe homo-
geneous high- and low-density phases ofCd; siii d s.0 in
order to provide stability against short-wavelength inhomo-
geneities. Figure 2 offers a schematic representation of the

homogeneous part of the free-energyF as a function ofm,
with the different stability regions. Because theC’s are as-
sumed to be neutral particles, the free-energy densitysi.e.,
the parameters«=g , s, andl belowd and the corresponding
stability diagramare not modified by an external electric
field.

The dynamics ofC is thus driven by the free-energy
densitys1d, but, in addition, there is acontinuous creation of
C by the moving reaction front, with a certain space and time
dependent source density. One is thus led to write down33 the
following phenomenological evolution equation for the re-
duced concentration fieldmsx,td:

]m

]t
= − lD

dFfmg
dm

+ Smsx,td

= − lDs«m− gm3 + sDmd + Smsx,td, s3d

where l is a kinetic coefficient andSmsx,td is the source
density. Equations3d has to be solved with the homogeneous
initial condition msx,t=0d=−sch+cld / sch−cld that corre-
sponds to the absence ofC inside the system before the
beginning of the reaction. Note that the above “Cahn–
Hilliard equation with a source” should also contain two
noise terms. One of them is the thermal noise, while the
other one originates in the chemical reaction that creates the
source term. However, as discussed in Ref. 36, the noise in
sA+B→Cd-type reaction fronts can be neglected in dimen-
sionsdù2, while neglecting the thermal noise term means
that an effective zero-temperature process is considered, and
that the phase separation takes placeonly through a spinodal
decomposition mechanism. This approximation is supported
by the experimentally known fact of the very long life of the
formed patterns, which amounts to a very low “effective
temperature” of the system. The theory could be refined by
including the thermal noise, since then the nucleation and
growth processes would be also captured. The role of noise
has been investigated for the fieldless case in Ref. 34, and its
effects in the presence of an electric field will be the subject
of a forthcoming paper. Here we shall remain within the
deterministic framework corresponding to Eq.s3d.

Let us now concentrate on the source termSmsx,td in Eq.
s3d. As already mentioned, this term models the production
of C by the moving reaction front, and it isinfluenced by the
presence of an external electric field. The effect of the elec-
tric field has been studied in detail in Ref. 32, and we sum-
marize below the main resultsfor the range of parameters
that are relevant for typical experimental situations. One has
to realize first that the reagentsA and B are electrolytes
which dissociate,

A → A+ + A−, B → B+ + B−, s4d

and the basic reaction process is

A− + B+ → C, s5d

while the “background” ionsA+ andB− are not reacting. The
modeling of the system in Ref. 32 was based on several
simplifying assumptions:sid the one-dimensional character
of the systemsi.e., all the relevant parameters are onlyx
dependentd; sii d the complete dissociation of the electrolytes

FIG. 2. The homogeneous part of the free-energy densityF as a function of
the reduced densitym. The phase separation is an activated process in the
metastable regimesms=1/Î3, umu,me=1, while it goes by spinodal de-
composition in the linear instability regionumu,ms=1/Î3.
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A and B into their respective ionssthat allows to eliminate
the dynamics of the neutralA’s and B’s from our descrip-
tiond; siii d infinite reaction rate and irreversibility of the basic
reaction A−+B+→C. This is justified by the fact that the
characteristic reaction time scale is much smaller than any
time-scale connected with diffusion and precipitationspat-
tern formationd, and leads to a pointlike reaction zone;sivd
the electroneutrality approximationsthe local charge density
is zero on space scales that are relevant to pattern formationd,
whose applicability for the systems under study was dis-
cussed in detail in Ref. 37;svd we considered monovalent
ions; svid finally, we assumed equal diffusion coefficientsD
of the ions. As mentioned in Ref. 32, any of these assump-
tions may be relaxed without generating major changes of
the conclusions of our study. The reaction-diffusion equa-
tions for the concentration profiles of the ions can be solved
numericallyswith boundary conditions that correspond to the
presence of the two reservoirs of ions—of concentrationsa0

andb0, respectively—at the ends of the reaction cylinderd.
A first result refers to the motion of the pointlike reaction

zone; it is, to a good approximation, a diffusive motion,

xfstd = Î2Dft, s6d

with a diffusion coefficientDf that is practically unaffected
by the field intensity, i.e., it is given by its fieldless expres-
sion

erfSÎDf

2D
D =

sa0/b0d − 1

sa0/b0d + 1
, s7d

where D is the common diffusion coefficient of the ions.
Note that for a reverse field there is also a small drift com-
ponent in the motion of the front. However, for the range of
reverse fields and observation times we are considering, this
drift component can be neglected.

The effect of the field is more significant in the produc-
tion of C. As known,10 in the absence of the field the con-
centration ofC’s left behind the front is a constant and its
value c0 is determined by the initial concentrations of the
ions a0 and b0, and by their diffusion coefficients. In the
particular case of equal diffusion coefficientsD of the ions,
its value is given by

c0 < a0KÎ2D/Df , s8d

where K;s1+b0/a0ds2Îpd−1exps−Df /2Dd, and the diffu-
sion coefficientDf of the front is given by Eq.s7d. For an
infinite reaction rate, the corresponding source density for
the production ofC si.e., the density of production ofC per
unit timed is a d peak localized at the instantaneous position
of the frontxfstd,

Smsx,td =
a0KÎD

sch − cld/2
dfx − xfstdg

Ît
s9d

whose amplitude decays in time as,1/Ît.
Consider now an external electric field applied to the

system. For both polarities of the field, and for relatively
small values of the field intensitysthe so-calledlinear regime
at which we shall limit our study in this paperd, there is a
linear variation of the concentration ofC’s with x, with a

slope that is proportional to the applied tension,

csxd = c0f1 + shU/Ldxg, s10d

as illustrated by Fig. 3. The parameterh depends on the
values of the other parameterssi.e., a0, b0, andDd, and for
the set of parameters in Fig. 3 one infersh<5 V−1. We
should mention that the validity of this linear regime is wider
for positive tensionsse.g., it may go up toU /L<10 V/m for
the system considered in Fig. 3d and less extended for nega-
tive tensionsse.g., up toU /L<−2 V/m for the system in
Fig. 3d; beyond these limits there is a relative error larger
than 10% in approximatingcsxd by a linear profile with the
initial slope.

The above result on the spatial dependences10d of the
concentration of the reaction product is incorporated into the
source term through the following modification of its ampli-
tude:

Smsx,td =
a0KÎD

sch − cld/2
f1 + shU/Ldxgdfx − xfstdg

Ît
. s11d

As discussed in the Introduction, in the absence of an
electric fieldsU=0d this spinodal decomposition scenario re-
produces, in a simple and coherent way, all the generic laws
of Liesegang patterns. Moreover, it contains very few param-
eters, which can be inferred from experimental data,42 and
thus has a predictive power. We expect to recover these
qualities in the presence of an applied external electric field,
as well.

The solution to the Cahn–Hilliard equations3d with the
source s11d, i.e., the profile of the reduced concentration
msx,td is obtained numerically. As already mentioned above
and discussed in detail in Ref. 32, we decided to focus our
analysis on the situations that are experimentally relevant
and, in particular, the choice of parameters intends to mimic
real experimental situations. Namely, we considered concen-
trations of the reagentsa0 andb0 in the range 10−2M—10M,
lengthL of the system of some tenths centimetres, and ten-
sionsU applied between system’s edges such that we are in
the linear regime of the production ofC, i.e., U /L varies
between −2 and +10 V/m. The common diffusion coeffi-
cient of the ions was chosen asD=10−9 m2/s for all the
calculations. The parametersl , «=g, and s of the free-

FIG. 3. The density of the reaction productC left behind the reaction front
for different values of the electric fieldU /L applied to the system. The
observation time ist=10 days. The values of the other parameters area0

=10M , b0=0.1M, andD=10−9m2/s that lead toc0=0.1145M.
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energy-driven part of the dynamics ofC can be inferred from
the experimental data as explained in the Appendix. Finally,
the pattern formation was followed for a period of the order
of ten days of experimental observation time. In the follow-
ing section we present the results that were obtained for a
polarity U.0 of the applied fieldsthe forward fieldd, that
favors the reaction, i.e., that drives theA− and B+ ions to-
wards the reaction zone. Section IV will be devoted to the
U,0 sthe reverse fieldd case study.

III. PATTERN CHARACTERISTICS FOR A FORWARD
APPLIED FIELD

A first generic feature of the patterns formed in the pres-
ence of the forward fieldsU.0 in our setupd is that the
number of bands is finite, i.e., band formation stops at a
certain moment through the appearance of a continuous pre-
cipitation regionsa “plug” of high-density precipitated. The
higher the tension, the earlier this plug forms, see Fig. 4 for
an illustration.

One can make a rough estimate of the distance,+ of the
onset of the plug through the following reasoning: the plug
forms when the width of thenth high-density band,wn, be-
comes equal to the distancesxn+1−xnd between thenth and
thesn+1d high-density bands. If we estimate that the amount
of C produced by the front betweenxn andxn+1 goes entirely
in the nth high-density band, i.e.,

c0f1 + sxn + xn+1d/2gsxn+1 − xnd = chwn = chsxn+1 − xnd,

s12d

then we obtain for the distance,+:

,+ = sxn + xn+1d/2 =
L

hU

ch − c0

c0
. s13d

Figure 5 offers a comparison between the results of the nu-
merical solution of the partial differential equations and this
theoretical estimation of,+ for different values of the for-
ward fieldU /L.0. Note that the experimental measurement
of ,+ allows us to estimate the value ofch sprovided thatc0

is knownd.

A second generic feature of the pattern is that the dis-
tance between two successive bands diminishes as compared
to the fieldless case, and this effect is increasing with in-
creasing forward applied fieldU /L. This can be easily un-
derstood through a simple qualitative argument. In the pres-
ence of the forward field, the reaction front leaves behind a
larger quantity ofC than in the absence of the field. Thus,
after the formation of a band, the reestablishment of the
phase-separation instability conditions takes place sooner in
the presence of the field, resulting in a higher spatial density
of bands in the system. With a good approximation, the po-
sitions of the bandsxn still form a geometric series as in the
fieldless case, and one can define an experimentally measur-
able “effective” spacing-law parameterp:

xn , s1 + pdn. s14d

Thus, as illustrated in Fig. 6,p is a decreasing function of the
forward applied fieldU /L. Due to the decrease in the number
of bands with increasing field intensity our measures ofp
were restricted to a rather narrow interval of field intensities
aroundU /L=0. Note that the spacing laws14d is only ap-
proximate for the nonzero field case, and is expected to hold
for large enoughn’s. Accordingly, the estimated value ofp
depends on the rangenminønønmax of bands used for its

FIG. 4. The profile of the reduced concentrationmsxd for different values of
the forward applied fieldU /L.0. The snapshots are taken att=14 days.
The dashed lines represent the position of the reaction front at this time. The
values of the other parameters arec0=0.1145M , cl =0.0045M , ch

=0.3645M , D=10−9m2/s , Df =5.43310−9m2/s, andh=5 V−1. One notices
the decrease in the band spacing with increasing tension, as well as the
appearance of the plug—earlier for larger tensions.

FIG. 5. The value of the distance,+ of the plug-setting-in as a function of
the forward applied fieldU /L.0. The diamonds represent the numerically
estimated values, while the dashed line corresponds to the rough theoretical
estimate, Eq.s13d. The values of the parameters of the system are the same
as for Fig. 4. The size of the symbols is representative for the estimated error
bars.

FIG. 6. The value of the effective spacing coefficientp as a function of the
applied fieldU /L. The values of the parameters of the system are the same
as for Fig. 4. The size of the symbols is representative for the estimated error
bars.
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estimation. The uncertainty in the value ofp is reflected by
the estimated error bars in Fig. 6. Also, the value of,+

=sxn+xn+1d /2<xns1+p/2d, see Eq.s13d above, is affected
by the uncertainty on the value ofp, as indicated by the error
bars in Fig. 5.

Another remarkable feature of the pattern is its “instabil-
ity.” Indeed, as illustrated by Fig. 7, due to the high densities
of C in the plug regionswhich thus becomes unstabled, there
is a “flow back” of C from the plug towards the regions
where the patterns had formed previously. Therefore, this
may cause a gradual disappearance of some of the already
formed bands. This effect is not present in the fieldless case.

One has to realize that the structure of the patterns de-
pends essentially on the position of the concentration ofC’s
left behind by the reaction front with respect to the stability
domains associated with the free-energy densityF. This re-
mark holds both in the absence and in the presence of an
applied field. If, for example,c0 is below the spinodal value,
no pattern will form in the absence of the field. However, in
the presence of a forward field, the concentration ofC’s left
behind the front is continuously increasing, and thus, at a
certain moment, it will cross the spinodal curve, and there-
fore the pattern formation mechanism will be “turned on,”
i.e., patterns will start to form after a certain time and then
continue up to the eventual plug formation discussed above,
as illustrated in Fig. 8sad.

We can also comment here on the width law.42,47,48As
shown in Ref. 42, in the fieldless case the derivation of this
law, wn,xn

a, with a=1, is straightforward. Let us apply the
same reasoning as in Ref. 42 in the presence of an electric
field. One combines the facts thatsid the reaction front leaves
behind a densitycsxd of C’s, Eq. s10d; sii d the C’s segregate
into low cl and highch density bands;siii d the number ofC’s
is conserved in this segregation process. The equation ex-
pressing the conservation ofC’s can be written as

c0f1 + shU/Ldsxn + xn+1d/2gsxn+1 − xnd

=chwn + clsxn+1 − xn − wnd, s15d

which together withxn+1=s1+pdxn leads to

wn =
psc0 − cld

ch − cl
xn +

c0ps1 + p/2dhU/L

ch − cl
xn

2. s16d

It is, however, difficult to make a clear-cut statement on this
point. Indeed, for field intensities for which the second term
in Eq. s16d may start to play a role, the total number of bands
is so small that no reliable conclusion can be drawn about the
“systematic” behavior of their width. In case one attempts to
fit wn,xn

a, one will infer an effectivea which is between 1
and 2 and increases with the field.

IV. PATTERN CHARACTERISTICS FOR A REVERSE
APPLIED FIELD

Let us consider now the case of the reverse polarity of
the electric fieldsi.e., the case when it drives the reacting
ions away from the reaction zone,U,0 in our setupd. Again,
a generic characteristic of the pattern is the finite number of
bands. This can be easily understood in connection with the
continuous decrease of the concentration ofC’s left behind
the reaction front, up to a point when the phase-separation
conditions are no longer fulfilled. As illustrated in Fig. 9,
there are less and less bands for larger and larger field inten-
sities. But contrary to the forward field case, these bands are
“stable,” i.e., nothing analogous to the “flow-back” process
in this case. Moreover, the last formed band collects progres-
sively all theC’s left behind the front, i.e., its width increases
slowly with time.

There exists thus a maximum distance,− of the spatial
extension of the pattern,,−<xns1+pd, wherexn is the left
edge of the last, right-most high-density band. Thus the esti-
mated,− reflects the uncertainty in the value ofp, leading to
the error bars in Fig. 10. A rough theoretical evaluation of
this length is given through the condition that the concentra-
tion of theC product at this point equals the lower limit of
the spinodal decomposition domain, i.e.,

FIG. 7. The profile of the reduced concentrationmsxd at different times for
a fixed forward applied fieldU /L=6 V/m. The dashed lines represent the
position of the reaction front at the corresponding times. One notices the
progressive flow back of theC’s from plug zone, i.e., the backward disap-
pearance of the pattern. The values of the parameters of the system are the
same as for Fig. 4.

FIG. 8. The profile of the reduced concentrationmsxd at t=14 days for two
sets of values of the parameters:sad c0=0.1145M , Df =5.43310−9m2/s , h
=5 V−1, ch=0.72M, andcl =0.120M si.e., c0 is below the spinodal decom-
position domaind, and an applied electric fieldU /L=10 V/m. One notices
the initial absence of pattern, then a limited region of existence of the pat-
tern and, in the end, a plug region starting to form.sbd c0=0.1145M , Df

=5.43310−9m2/s , h=5 V−1, ch=0.1045M, and cl =0.045M si.e., c0 is
above the spinodal decomposition domaind, and an applied electric field
U /L=−2 V/m. One notices the initial plug region, then a limited region of
existence of the pattern, and, in the end, the disappearance of the pattern.
The dashed line represents the position of the front at the time of the
snapshot.

204502-6 Bena, Droz, and Rácz J. Chem. Phys. 122, 204502 ~2005!

Downloaded 15 Mar 2006 to 157.181.170.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



cs,−d = cl + S1 −
1
Î3

Dch − cl

2
,

from which

,− =
L

huUu
sc0 − cld − s1 − 1/Î3dsch − cld/2

c0
. s17d

A comparison of this result with the numerical solution
of the partial differential equations is given in Fig. 10 for
different values of the field intensityuUu /L.

We can see that the expressions for the two lengths,+

and,− fEqs.s13d ands17dg provide a way to evaluatech and
cl through experimental measurements of the length of the
patterns.

As expected, in the reverse field case, there is an in-
crease of the spacing between the bandssas compared to the
fieldless cased, and this is illustrated by an increasing of the
effective spacing coefficientp with increasing field intensity
uUu /L, see Fig. 6 for a numerical estimation.

Finally, it is worth mentioning again how the appearance
of the pattern is sensitive to the position ofc0 with respect to
the stability domains associated with the free-energy density
F. If, e.g., c0 is above this instability domain, there is no
pattern formation in the fieldless case, but just a uniform
plug of C behind the front. However, as illustrated in Fig.
8sbd, in the presence of a reverse field, due to the continuous
decrease in the concentration ofC, the instability domain
may be reached from above, and a pattern starts to form after
an initial plug region, and eventually, as discussed above,
stops after some time, when the instability domain is left for
too small concentrations ofC.

V. COMPARISON WITH EXPERIMENTS

Experiments on Liesegang patterns in the presence of an
electric field have been going on quite a while since the
pioneering works of Happelet al.18 and Kisch,19 see Refs.
20–31. As already mentioned in Ref. 32, with the exception
of Refs. 21, 28, and 29, these experiments were carried on
for a single polarity of the electric fieldsi.e., either a “for-
ward,” or a “reverse” field according to our terminologyd.50

It is therefore not surprising that each of them “covers” only
a part of the situations that are predicted by our theory, which
thus has the merit to include all these elements in an unify-
ing, coherent, and simple frame. We shall present below a
brief qualitative summary of these experimental results.

Concerning the motion of the front, it is experimentally
found to bediffusivein Refs. 21,22swith a slight decrease in
the diffusion coefficient with increasing field intensityd and
Ref. 23sfor a two-dimensionals2Dd geometryd, in agreement
with our theoretical predictions32 for a forward field. Other
experiments,25–27 present a motion of the front with a small
drift component sthat increases with increasing field
intensity21d. Occasionally, this drift component is given a
theoretical justification on the basis of a reaction-diffusion
model for the system with a superimposed constant electric
field intensity, see Refs. 27–29 and 31, that, as discussed in
Ref. 32, is a somewhat unrealistic assumption. Here again
our model is able to capture the appearance of this small drift
component for the case of areverseelectric field.

Several experimentally studied modifications of the
characteristics of the Liesegang patterns in the presence of an
electric field are quoted in the literature, and sometimes they
seem contradictory.

sid A first striking observation is the appearance of an
uniform precipitation for sufficiently high
field-intensities20–23 and/or after a sufficiently long
time.21

sii d Also, there is an “acceleration” of the band
formation,21 i.e., the time of appearance of the first
band decreases with increasing field intensity.23

siii d A decrease of the spacing between successive bands
sas compared to the fieldless cased with increasing
field intensity is registered in Refs. 20,23.

sivd On the other hand, an increase of the spacing between
successive bands is described in Refs. 25–27 and 30
sfor a 2D experimental setupd.

FIG. 9. The profile of the reduced concentrationmsxd for different values of
the reverse applied fieldU /L,0. The snapshots are taken att=14 days. The
dashed lines represent the position of the reaction front at this timesexcept
for the last panel, where it indicates the stopping of the reaction,Sm=0d. One
notices the increase in band spacing with decreasing applied tension, as well
as the rapid disappearance of the pattern. The values of the parameters of the
system are the same as for Fig. 4. The last band is significantly wider than
the others, because it collects all the particles left behind the front after the
formation of bands ceases.

FIG. 10. The value of the distance,− of disappearance of the pattern as a
function of the absolute value of the reverse applied fielduUu /L. The dia-
monds represent the numerically estimated values, while the dashed line
corresponds to the rough theoretical estimate, Eq.s17d. The values of the
parameters of the system are the same as for Fig. 4. The size of the symbols
is representative for the estimated error bars.
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svd As reported in Refs. 25, 26, and 30, at a given time
there are less bands formed for higher field intensities.

svid The paper23 indicates a reduction of the initial “dif-
fuse portion” with increasing field intensity, and the
paper30 also gives an example of the reduction of the
initial “fuzzy zone.”

One is now in position to recognize that all these fea-
tures are recovered in a simple way within our theory. More
precisely,sid–siii d and the first result insvid are obtained in
our model in the case of a forward electric field, see Sec. III;
while sivd, svd, and the second result insvid can be obtained
theoretically for a reverse applied field, see Sec. IV.svii d
Finally, a special remark on the results of Refs. 28,29, which
sometimes match our results, sometimes are just the opposite
of those obtained from our theorysas far as the polarity of
the electric field is concernedd. In particular, in Ref. 28 it was
found thatsad the motion of the reaction front is diffusive for
a reverse field and has a small drift component for a forward
field scontrary to our theoryd; sbd the average spacing coef-
ficient p decreases with increasing fieldsjust like in our
theoryd. In Ref. 29 an attempt to fit the width lawssee, e.g.,
Ref. 42d in the presence of an electric field,wn,xn

a, leads to
an exponenta that is decreasing monotonically with the
field—in opposition with the result of our discussion follow-
ing Eq. s16d. However it was argued51 that in his case the
properties of the intermediate compounds are responsible for
this “anomalous” behavior, and such effects are outside the
range of our theoretical model.

Most of the above examples show agreement with our
theory at a qualitative level. It should be noted, however, that
our model offersquantitative estimates of the changes as
compared to the fieldless case, and thus is well suited for
direct comparison with the results of appropriately designed
experiments.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we examined the influence of an applied
electric field on the formation and characteristics of Lieseg-
ang patterns that appear in the wake of anA−+B+→C reac-
tion front. The appearance of the pattern is related to the
phase separation of the precipitateC into a high- and low-
density phase. At a macroscopic, phenomenological level,
the dynamics ofC particles can be modeled using a Cahn–
Hilliard equation supplemented with a space and time-
dependent source term that describes the production ofC’s
by the reaction front. It was found that for both polarities of
the applied field the pattern has a finite spatial extension.
Moreover, measuring this spatial extension for various val-
ues of the applied tensions allows to infer the values of the
concentrations ofC in the high- and low-density phases. The
distance between the bands in the pattern is influenced by the
intensity of the applied field, namely, it decreases with in-
creasingU /L for a forward fieldU.0, and increases with
increasinguUu /L for a reverse fieldU,0.

One has to underline that the proposed model contains a
minimal number of parameters, and all of them can be in-
ferred from experimental data. Thus the model, besides re-
producing well the generic experimental laws of Liesegang

patterns, has a clear predictive power that can be used to
control experimental situations. The data we are presenting
are the result of numerical solution of the partial differential
equations, and are based on a set of simplifying assumptions.
It is expected that most of these assumptions do not affect
our main conclusions. However, the details of the reaction
process leading to the final precipitateC may be more com-
plex se.g., implying several steps, intermediate compounds
with different electric charges and diffusivities, etc.d, and the
role of the electric field may also have unexpected features.
The simplest extension of our work would be to consider a
reaction scheme with one bivalent and two monovalent ions,
a case that occurs in several experiments. Work on this type
of systems is in progress.

APPENDIX: SETTING THE PARAMETERS

Typical experimental situations correspond to concentra-
tions a0 andb0 of the reagents of the order of 10−2M–10M,
with a ratioa0/b0,10–100, and thus it is suitable to choose
the unit of concentration asn0=1M. The diffusion coeffi-
cients of the reagents are of the order,10−9m2/s, so that the
length, and timet scales should be chosen such that,2/t is
of the same order of magnitude,

,2

t
, D.

Moreover, the experimental patterns have a total length of
about 20 cm, the time to produce such a pattern is of some
ten days, and this offers the order of magnitude of the diffu-
sion coefficient of the reaction front, which is typically of the
same order or an order of magnitude larger than the diffusion
coefficients of the reagentssdepending on the ratioa0/b0 of
the concentration of the reagentsd. The typical widths of the
precipitation bands are of a few millimeters at the beginning,
and approach,1 cm at the end, and so are the distances
between two successive bands. From the visual observation
of the beginning of the band formation it takes some ten
minutes for the band to be clearly seen, and some hundred
minutes for its complete formation. Since the Cahn–Hilliard
model has intrinsic length scaleÎs /« and time scale
s / sl«2d, these have to be comparable to the typical length
and time scales of the appearance of a single band. We are
thus led to the following orders of magnitude for the length
and time scales:

, = Îs/« , 10−4 m, t = s/sl«2d , 10 s.

There remains, however, the question of determining the
concentrations of the two phases of theC precipitate,ch and
cl. As explained in the main text, this can be done through
measurements of the total spatial extent of the pattern in the
presence of forward and reverse electric field, respectively.

Here is the set of parameters that we used in most of the
simulations presented above. For the concentrations of the
reagents we takea0=10M , b0=0.1M, and the common dif-
fusion coefficient of the electrolyte ions isD=10−9m2/s.
This leads, according to Eqs.s7d and s8d, to a diffusion co-
efficient of the frontDf =5.43310−9m2/s, and a concentra-
tion of the fieldless reaction productc0=0.1145M. For the
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above parameters the coefficienth in the expressions10d of
csxd is h=5 V−1. The parameters of the Cahn–Hilliard model
are chosen such that,=Îs /«=10−4m, and t=s / sl«2d
=40 s. Regarding the concentrations of the low and high-
density phases ofC, we usually set them such thatc0 given
above is in the instability domain of spinodal decomposition,
ch=0.3645M andcl =0.0045M.
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