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Magnetization distribution in the transverse Ising chain with energy flux
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The zero-temperature transverse Ising chain carrying an energy fluxj E is studied with the aim of determin-
ing the nonequilibrium distribution functions,P(Mz) and P(Mx) of its transverse and longitudinal magneti-
zations, respectively. An exact calculation reveals thatP(Mz) is a Gaussian both atj E50 and atj EÞ0, and the
width of the distribution decreases with increasing energy flux. The distribution of the order-parameter fluc-
tuations,P(Mx), is evaluated numerically for spin chains of up to 20 spins. For the equilibrium case (j E

50), we find the expected Gaussian fluctuations away from the critical point, while the critical order-
parameter fluctuations are shown to be non-Gaussian with a scaling functionF(x)5F(Mx /^Mx&)
5^Mx&P(Mx) strongly dependent on the boundary conditions. Whenj EÞ0, the system displays long-range,
oscillating correlations butP(Mx) is a Gaussian nevertheless, and the width of the Gaussian decreases with
increasingj E . In particular, we find that, at critical transverse field, the width has aj E

23/8 asymptotic in the
j E→0 limit.

DOI: 10.1103/PhysRevE.67.056129 PACS number~s!: 05.50.1q, 05.60.Gg, 05.70.Ln, 75.10.Jm
rg
th
t t
s
-
m
S
r-
o

ic

um
d

,

as
c
r
r,
s
oc
se
u
n-
te
ll

m
n

s

ri

e
ap-
is-
tri-

em.
ibu-

-
and

c-
the
pic
tri-
the
on
cay
er

s
ry
he
ere
g as
re
cil-
er-
are
in

on-
ith
e

as a
I. INTRODUCTION

Nonequilibrium steady states~NESS! have been much
studied but a description of some generality has not eme
so far. Among the many approaches tried, there is one
continues to receive particular attention. It is an attemp
understand the general features of NESS through studie
nonequilibrium phase transitions@1–3#. The basic assump
tion here is that the universality displayed by equilibriu
phase transitions carries over to critical phenomena in NE
as well. Thus, by investigating the similarities and diffe
ences from equilibrium, one may gain an understanding
the role of various components of the competing dynam
generating the steady state. For example, one may find
observing the universality classes of various nonequilibri
phase transitions that dynamical anisotropies often yield
polelike effective interactions@4–6# or that competing non-
local dynamics~anomalous diffusion! generates long-range
power-law interactions@7#.

The extension of concepts of critical phenomena to ph
transitions in NESS also implies that the distribution fun
tions of macroscopic quantities~such as the order paramete!
are nontrivial~non-Gaussian!. They are universal, howeve
and characterize the given nonequilibrium universality cla
too. The advantage of studying the scaling functions ass
ated with the distribution functions is that building the
functions does not involve any fitting procedure and th
they allow for a fit-free comparison with experiments. I
deed, using these distribution functions, a number of in
esting results have been derived for surface growth as we
for other nonequilibrium processes@8–13#.

In this paper, we continue our studies of nonequilibriu
distribution functions by investigating the effects of a no
equilibrium constraint on a well-knownquantumphase tran-
sition; namely, we take the transverse Ising chain that ha
order-disorder transition as the transverse fieldh is varied,
and drive it by a field to produce an energy fluxj E through
the system. The resulting steady states have been desc
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in Ref. @14# and it has been found that, in addition to th
equilibrium phases, a flux-carrying nonequilibrium phase
pears, which is distinct by its correlations decaying with d
tance as a power law. We shall be concerned with the dis
bution function in the various phases of the above syst
More precisely, we shall determine the steady-state distr
tion functionsP(Mz) and P(Mx) of the Mz ~nonordering
field! and Mx ~ordering field! components of the macro
scopic magnetization in all three phases of the system at
near its critical point.

The results are surprisingly simple. The distribution fun
tions are Gaussian in the equilibrium phases away from
critical point. This is expected since we have macrosco
quantity and the correlations decay exponentially. The dis
bution of the nonordering field remains a Gaussian at
critical point of the equilibrium system, as well. The reas
for this is that although the appropriate correlations de
with distancen as a power law but the exponent in the pow
is large (1/n2), so that the fluctuationŝMz

2&2^Mz&
2 do not

diverge ath5hc . The distribution function of the ordering
field becomes nontrivial athc and our numerical calculation
demonstrate thatP(Mx) depends strongly on the bounda
conditions taken to be periodic, antiperiodic, and free. T
unexpected simplicity is in the current-carrying phase wh
the energy flux generates long-range correlations decayin
a power law (1/An) but, nevertheless, the distributions a
Gaussian. The mathematical reason for this lies in the os
lating character of the correlations, which prevents the div
gence of the spatial sum of the correlations which in turn
proportional to the fluctuations. Physically, the oscillations
the correlations can be traced to the form of energy flux@see
Eq. ~3! below#, which suggest that the consecutivex and y
components of the spins are more and more rigidly interc
nected asj E is increased and thus fluctuations decrease w
increasingj E . This picture will be seen to be valid near th
nonequilibrium phase boundaries where the fluctuations
function of j E can be explicitly calculated.
©2003 The American Physical Society29-1
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The above results are presented in the following ord
Section II contains a review of the transverse Ising mo
with energy flux, including the setup of the formalism co
venient for calculating the distribution functions. Next~Sec.
III !, distribution P(Mz) is calculated exactly. Numerica
work on P(Mx) and preliminary analytic work on correla
tions are presented in Sec. IV, followed by concluding
marks in Sec. V.

II. TRANSVERSE ISING MODEL WITH ENERGY FLUX

The transverse Ising chain is one of the simplest syst
displaying a critical order-disorder transition@14–19#. It is
defined by the Hamiltonian

ĤI52J(
i

si
xsi 11

x 2
h

2 (
i

si
z , ~1!

where sW i5
1
2 sW i and s i

a (a5x,y,z) denotes the three Pau
matrices at sitesi 51,2, . . . ,N of a d51 chain, andh is the
transverse field in units of the Ising coupling (J51 is set in
the rest of the paper!. We shall mainly consider periodi
boundary conditions (sN11

a 5s1
a), which are the simples

ones allowing for a nonzero energy current to flow throu
the chain~free boundary conditions imply a zero steady-st
current in the above model and as it turns out the same h
for antiperiodic boundary conditions!.

The order parameter of this system isMx5( isi
x , and the

ground state of this Hamiltonian changes from being dis
dered^Mx&50 for h.1 to ordered̂ Mx&Þ0 for h,1. The
transition pointh5hc is a critical point in the universality
class of the two-dimensional Ising model.

We would like to investigate the nonequilibrium states
ĤI which carry a given energy flux. At zero temperature, t
amounts to finding the lowest energy state ofĤI with a pre-
scribed energy flux. This can be accomplished@14–17# by
introducing a Lagrange multiplierl conjugate to the energ
current ĴE . Thus one should find the ground state of t
following Hamiltonian:

Ĥ52(
i

si
xsi 11

x 2
h

2 (
i

si
z2l ĴE . ~2!

Here the driving fieldl is again measured in units ofJ, and
the current operatorĴE is the sum of local energy fluxe
given by the following expression:

ĴE5
h

4 (
i

~si
xsi 11

y 2si
ysi 11

x !. ~3!

Note that the time evolution of the chain is still governed
ĤI through whichĴE was initially defined.Ĥ is just a math-
ematical intermediary to determine the nonequilibriu
steady state ofĤI .

The driven system defined by Eqs.~2! and ~3! can be
solved @14# and one finds that the ground state does
change and the energy flux is zero up to a critical valuel
5lc(h) of the driving field. The ground-state expectatio
05612
r.
l

-

s

h
e
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r-

f
s

t

value of energy fluxj E5^ĴE&/N becomes nonzero forulu
.lc . The resulting phase diagram is depicted in Fig. 1.

Here we note a hitherto unnoticed property of the Ham
tonian ~2!; namely, the duality properties of the transver
Ising model@18# have an appropriate generalization to t
full nonequilibrium phase diagram ofĤ. Indeed, let us de-
note the action of duality transformation bysi

a→si
a* and

define the transformation as is done for the Ising model i
transverse field

si
z* 52si

xsi 11
x , si

x* si 11
x* 5

1

2
si

z. ~4!

It can be verified then that the HamiltonianĤ@h,l,$si
a%# ~2!

characterized by the two couplings (h,l) transforms into an
identical Hamiltonian with couplings (h,l)* 5(h21,2lh),

Ĥ@h,l,$si
a%#5hĤ@h21,2lh,$si

a* %#. ~5!

Hence the duality transformation leaves the wholeulu5lc
curve globally invariant and, furthermore, it leaves theh
51 line pointwise invariant~examples of dual-conjugat
points are given in Fig. 1!. In order to keep the formulas
simple, from now on we shall restrict our analysis tol>0,
that is to j E>0.

The self-dualh51 line is expected to display specia
properties. For example, quantities such aslc /l, or the
wave vectorsq6 where the excitation spectrum is gaples
are left invariant by the duality transformation. Furthermo
the functional form of various physical quantities~disper-
sion, energy flux, fluctuations! considerably simplify on this
line and thus the knowledge of self-duality helps in locati
limits where exact calculation can be carried out.

Our main goal is to calculate distribution function
P(Mz) and P(Mx) in various regions in the above phas
diagram. These functions are defined as

FIG. 1. Phase diagram of the driven transverse Ising mode
the h2ulu plane whereh is the transverse field whilel is the
effective field that drives the flux of energy. Pairs of dual-conjug
points are shown by filled squares, circles, and stars; and linh
51 is self-dual as discussed in the text. Power-law correlations
present in the nonequilibrium phase,JEÞ0, and on the Ising criti-
cal line in the equilibrium phase,JE50 (h51, 0<ulu<2).
9-2
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P~Ma!5K dS Ma2(
i

si
aD L , ~6!

where brackets denote the quantum mechanical expect
value in the ground state@note that we have omitted th
index a in Pa(.), i.e., the argument of the function define
which distribution is considered#.

There are two parts to our calculations. FunctionP(Mx)
is evaluated numerically by diagonalizingĤ for chains con-
taining up toN518–20 spins, whileP(Mz) is found ana-
lytically. The exact calculation is possible becauseMz

5(q(cq
†cq21/2) is a quadratic form in the fermion oper

tors (cq
† , cq) in which the HamiltonianĤ5ĤI2l ĴE is qua-

dratic as well. Thus the calculation of the generating funct

G~s!5^e2sMz& ~7!

becomes a problem of evaluating Gaussian integrals. We
gin with this part of the problem.

A. Formalism

HamiltonianĤ can be diagonalized@14# by first introduc-
ing creation-annihilation operators, then employing t
Jordan-Wigner transformation@19# to transform them into
fermion operators (c, ,c,

†) and, finally, using a Bogoliubov
transformation on thecq andc2q

† components of the Fourie
transforms ofc,-s. The calculation ofP(Mz) becomes rela-
tively simple if after using the Jordan-Wigner transformati
one passes to a path-integral formulation~see, e.g., Ref.@20#
for a pedagogical account!. One then finds that the system
described by the following quadratic action:

S@ c̄,c#

5E dv

2pE dq

2p F1

2
@ c̄q~v!c2q~2v!#Bq,vS c̄2q~2v!

cq~v!
D G ,

~8!

where the Grassmann fieldsc̄q(v) andcq(v) are related to
cq

† andcq correspondingly, while the scattering matrixBq,v

has the following inverse

Bq,v
21 5S ^ c̄2q~2v!c̄q~v!& ^c̄2q~2v!c2q~2v!&

^cq~v!c̄q~v!& ^cq~v!c2q~2v!&
D .

~9!

Here the correlators are given by

^cq~v!c̄q~v!&5^cq~v!c̄q~v!&*

5
1

2Lq

F h

2
1

1

2
cosq2Lq

iv2Lq
1

2

h

2
1

1

2
cosq1Lq

iv2Lq
2

G
~10!
05612
ion

n

e-

e

and

^c̄2q~2v!c̄q~v!&5^cq~v!c2q~2v!&*

5

i
1

2
sinq

2Lq
S 1

iv2Lq
2

2
1

iv2Lq
1D ,

~11!

whereLq andLq
6 are the dispersion relations forĤI andĤ,

respectively,

Lq5
1

2
A11h212h cosq, ~12!

Lq
656Lq1

lh

4
sinq. ~13!

In order to return to the time variables, we must first stu
the two branchesLq

6 of the spectrum.

B. Spectrum and energy flux

Flux of energy is present in the system only above a cr
cal drivel.lc @14# ~see Fig. 1!, where

lc~h!5H 2 if h>1,

2

h
if h<1.

~14!

Indeed, it is not hard to see that

Lq
1~l<lc!.0, Lq

2~l<lc!,0. ~15!

Hence the ground state is unchanged with respect to the
Ising model ground state as long as the driving field does
exceedlc(h). This means that all observables will assum
their Ising model values and no energy current will be flo
ing through the chain.

However, forl>lc one may see thatLq
1 (Lq

2) changes
sign over the intervalI 25@q2 ,q1# (I 45@2q1 ,2q2#).
The explicit expression for the wave vectorsq6 is deduced
from

cosq65
246A~l2h224!~l224!

l2h
, 2p<q6<0.

~16!

Beyond the critical drive, the excitation spectrum gives r
to a ground state that breaks the left-right symmetry a
indeed, it may be verified@14# that a nonzero energy flux i
present in the chain with the explicit form of the flux give
by

j E5
h

4pl2
AS l22

4

h2D ~l224!. ~17!
9-3
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For later applications, we specify thej E5 j E(l) function in
the vicinity of the critical drive, asl→lc

1 ,

j E'5
Ah221

4p
Al22 for h.1, lc52,

1

4p
~l22! for h51, lc52,

h3/2A12h2

4p
Al2

2

h
for h,1, lc5

2

h
.

~18!

Besides, as they will naturally arise in the upcoming disc
sion, we further define here intervalsI 15@2p,q2#, I 3
5@q1 ,2q1#, andI 55@2q2 ,p# which are complementary
to I 2 and I 4 in @2p,p#.

C. Inverse of the scattering matrix in the absence or presence
of energy flux

When no current flows through the system,j E50, the
equal-time transform of (Bq,v)21, denoted byBq

21 , reads

Bq
215S i

1

2
sinq

2Lq

h

2
1

1

2
cosq1Lq

2Lq

2

h

2
1

1

2
cosq1Lq

2Lq
2

i
1

2
sinq

2Lq

D . ~19!

For j EÞ0, on the other hand,Bq
21 is given by Eq.~19!

only for qPI 1øI 3øI 5. If qPI 2øI 4, its expression is
changed to

I 2 :Bq
215S 0 0

21 0D , I 4 :Bq
215S 0 1

0 0D . ~20!

Having the expressions forBq
21 , we can start the calculatio

of the distribution functionP(Mz).

III. DISTRIBUTION FUNCTION
FOR THE TRANSVERSE MAGNETIZATION

A. Calculation of the generating function and its moments

The generating function~7! of P(Mz) can be expresse
through fermionic operators as

G~s!5^e2sMz&5eNs/2K expS 2s(
q

cq
†cqD L . ~21!

After normal orderinge2scq
†cq and using the Grassman

fields, we are left with evaluating the following expressio

G~s!5eN
s
2K expS 2 s̃(

q
c̄qcqD L , s̃512e2s ~22!

and the fields in the exponentials are evaluated at some fi
time. In order to evaluate Eq.~22!, we recall the following
05612
-

ed

result for Grassmann integrals@20#: the vacuum expectation
value of observables of form exp(2(qzqc̄qcq) can be obtained
as

K expS 2(
q

zqc̄qcqD L
5)

q
AdetS 2Azqz2q~Bq

21!11 211z2q~Bq
21!12

11zq~Bq
21!21 2Azqz2q~Bq

21!22
D .

~23!

As one can seeG(s) is a special case of Eq.~23! and it can
be evaluated by using the appropriate expressions~19! or
~20! for Bq

21 .
If no current flows, that is, forl<lc , we find that lnG

~the cumulant generating function! is given by

ln G~s!5
N

2E2p

p dq

2p
ln@~12nq!es1nqe2s#, ~24!

where

nq5~h1cosq12Lq!/~4Lq!. ~25!

One can verify that the normalization conditionG(0)51 is
satisfied, and one can also recover the well-known re
found by Pfeuty@21# for the magnetization

2
] ln G~s!

]s
u05^Mz&5NE

2p

p dq

2p S nq2
1

2D . ~26!

As we shall see below,P(Mz) is a Gaussian thus, in ad
dition to ^Mz&, the variance of the transverse magnetizat
Ns2(h)5^Mz

2&2^Mz&
2 will characterize the distribution. It

can be obtained from the second derivative of lnG(s) as

s2~h!52E
2p

p dq

2p
nq~12nq!. ~27!

It is interesting to note that the fluctuations inMz are inde-
pendent of the magnetic field in the ordered phase

s2~h!5H 1/4 for uhu<1,

1/~4h2! for uhu.1.
~28!

In the presence of nonzero energy flux (l.lc), the gen-
erating function is more complicated only because of
limits of integration in Eq.~24!,

ln Gl~s!5
N

2EI 1øI 3øI 5

dq

2p
ln@~12nq!es1nqe2s#. ~29!

Accordingly, the first and second cumulants of the magn
zation are given by

^Mz&l5
N

2EI 1øI 3øI 5

dq

2p

h1cosq

2Lq
, ~30!
9-4
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sl
2~h!5

1

2EI 1øI 3øI 5

dq

2p

sin2q

11h212h cosq
, ~31!

where we have used Eq.~25! to write out the integrands
explicitly. Note that we added al subscript toG, ^Mz&, and
s2 in order to indicate that these quantities do depend ol
for l.lc .

B. The transverse magnetization distribution is a Gaussian

In order to show that the transverse magnetization dis
bution is a Gaussian, let us consider thenth cumulant̂ Mz

n&c

which is the coefficient in front of (2s)n/n! in the expan-
sion of lnG(s). The latter coefficient isN times an integral of
a polynomial innq , both in the current-carrying and curren
free phases and, furthermore,nq is a nonsingular, strictly
positive function ofq ~note thatnq is finite even ath51).
Hence each cumulant depends linearly onN. In particular, as
we have seen, the variance ofMz denoted byNs2 ands2 @in
Eq. ~31! or Eq. ~27!# is finite.

It follows from the linearN dependence of the cumulan
that

^Mz
n&c

^Mz&c
n/2

;
N

Nn/2
;N(22n)/2, ~32!

thus the above ratio goes to zero for alln.2 asN→`. We
may therefore conclude that the limiting form of the dist
bution function of the transverse magnetization is a Gaus
of varianceNs2:

P~Mz!5
1

A2pNs2
e2(Mz2^Mz&)

2/2Ns2
. ~33!

The above result applies over the whole phase diagram a
is useful to check the numerical procedure employed in S
IV by evaluatingP(Mz) for finite-size systems. As can b
seen in Fig. 2, there is a convergence to the limiting fo
with increasingN and, furthermore, the nearly Gaussian flu
tuations ofMz are observed already at small sizes (N516
220). It is remarkable that the deviations from the Gauss
are very close to those of anN step random walk with a drift
determined from a correspondence between the left~right!
moves and the up~down! spins generating the average^Mz&.

C. Width of the Gaussian

Recalling the expression of the average and the varia
Eqs.~26! and~27!, we calculate them in the limit of vanish
ing flux (l→lc

1). Let us define

dMz5^Mz&l2^Mz&, ds25sl
2~h!2s2~h!. ~34!

The above quantities exhibit singular behavior as one en
the current-carrying phase. For the magnetization we fin

dMz52NE
q2

q1 dq

2p

h1cosq

Lq
, ~35!
05612
i-

n

it
c.

-

n

e,

rs

dMz55
21

p
~12h22!~l2lc!

1/2 for h.1, lc52,

21

p
~l2lc! for h51, lc52,

21

p
h5/2~l2lc!

3/2 for h,1, lc5
2

h
,

~36!

and for the variance

h>1, lc52, ds2.2
1

ph2
Al2lc,

h<1, lc5
2

h
, ds2.2

Ah

p
Al2lc. ~37!

Using Eq.~18! we find, asj E→0,

hÞ1, ds2.2 j E , ~38!

h51, ds2.2 j E
1/2.

As can be seen, the variance of the transverse magnetiz
is smaller in the current-carrying phase than in the curre
free phase. This supports the view that imposing a curr
stiffens the system, and thus decreases fluctuations.

IV. DISTRIBUTION FUNCTION FOR THE
LONGITUDINAL MAGNETIZATION

The exact evaluation ofP(Mx) appears to be a nontrivia
task and we have been able to calculate it only numeric
for finite-size chains. Since expression~6! for P(Mx) is a
ground-state expectation value, we had to find the grou
state wave function and, due to the sparseness of the Ha
tonian matrix, the Lanczos algorithm@22# could be used ef-

FIG. 2. Distribution functionP(Mz) for the transverse magne
tization Mz on the critical lineh5hc51, l<2. Results for peri-
odic boundary conditions are displayed. The solid line is
asymptotic Gaussian while the dashed line is the displacement
tribution of a 20-step random walk of step length 1/2 having a d
generating an average displacement equal to^Mz&.
9-5
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fectively. Since the ground-state wave function is need
with precision, we were able to accomplish this task
chain lengths of up toN520 with the results displayed o
Figs. 3–5.

A. Equilibrium distribution

In the equilibrium system (j E50), the correlation length
is infinite only at the critical point. Thus one expectsP(Mx)
to be a Gaussian forh.1, a sum of two Gaussians forh
,1, and a nontrivial distribution emerges only at criticali
(h5hc51). This is indeed what we observe, apart from t
finite-size effects showing up in non-Gaussian correcti
close toh51. At the critical point itself,P(Mx) shows fast
convergence to the asymptotic form as can be seen in F
where the N>16 points appear to have settled on t
asymptotic curve. This means that theN dependence o
P(Mx) is almost all in the scaling variableMx /A^Mx

2&,

FIG. 3. Scaling function for the distributionP(Mx) of the lon-
gitudinal magnetizationMx on the critical lineh5hc51, l<2, for
periodic boundary conditions. In order to demonstrate the smalln
of finite-size effects, the small systems (N58,10,12) are displayed
by full symbols while the larger systems (N516220) are all
shown by a single empty symbol.

FIG. 4. Distribution functionP(Mx) for the longitudinal mag-
netizationMx at the critical lineh5hc51, l<2. Results for peri-
odic, free, and antiperiodic boundary conditions are displayed
system sizesN516–20.
05612
d
r

s

. 3

a remarkable feature that has been observed in a s
of equilibrium- and nonequilibrium-critical state
@8,9,11,23,24#. Note also that the finite-size effects show u
mainly in the largeMx /A^Mx

2& region. This is in accord with
the general observation that the large-argument region of
scaling function is related to the long-wavelength propert
of the system.

Figure 4 shows the critical point scaling functions f
various boundary conditions~periodic sN11

a 5s1
a , antiperi-

odic sN11
a 52s1

a , and free!. One can observe here not on
the strongly non-Gaussian character of the distributions,
also the fact that scaling functions do vary with changing
boundary conditions. The boundary condition dependenc
the critical scaling functions is known@25–28#. It is also
known that the scaling functions depend on the shape of
system as well. In case of thed52 Ising model, this means
that the scaling function depends on the aspect ratioa of a
rectangular sample. Since the transverse Ising model ha
origin in the transfer matrix of thed52 Ising model in an
anisotropic limit@26#, we speculate that the distribution func
tions displayed in Fig. 4 are equal to thed52 critical order
parameter distributions in thea→0 limit with the boundary
conditions in the ‘‘short’’ direction being in thed51 andd
52 systems. Implicit in this belief is the assumption that t
boundary conditions in the ‘‘long’’ direction do not affect th
scaling function provideda→0.

B. Nonequilibrium distribution

In the nonequilibrium case (j EÞ0), we find that similarly
to Mz , the fluctuations of the longitudinal magnetizationMx
are also Gaussian~Fig. 5!. Remarkably, the finite-size, non
Gaussian corrections are small even near theh51, l52
point.

The Gaussian result is somewhat surprising since the
generates power-law correlations in^s0

xsn
x& decaying with

distance as 1/An @14#. Thus one may presume that th
current-carrying states are effectively critical. This is not
however, since the correlations are oscillating and the fl
tuations^Mx

2& ~given by the integral of the correlations! are
finite. Actually ^Mx

2& is decreasing with increasingj E ~see

ss

r

FIG. 5. Distribution functionP(Mx) for the longitudinal mag-
netizationMx away from the critical lineh5hc51, l<2.
9-6
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below! and thus we see here another example of fluxes g
erating power-law correlations but, nevertheless, making
system more rigid.

The decrease of̂Mx
2& with increasingj E can be seen in

the numerical studies of the finite spin chains. On the s
dual line (h51), however, this can be shown analytically
the limit of vanishing flux (l→lc52), where one finds

^Mx
2&}N jE

23/8. ~39!

The derivation of the above result is possible because
(h51, l5lc) point is a critical point with infinite correla-
tion length. Approaching this point along theh51, l→lc

1

line, one can observe from numerical studies@14# that the
wavelengthk21 of the oscillation of the correlation functio
Cx(r )5^si

xsi 1r
x &}coskr diverges ask21}(l2lc)

21/2. This
diverging wavelength allows one to take a continuum lim
and to establish@33# to all orders in perturbation theory, tha
the order-parameter correlations possess the following s
ing form:

Cx~r !'
A

r 1/4
F~kr !, ~40!

with the small argument limit of the scaling function expli
itly given by F(x)512x2/21x4/161O(x6).

The derivation of the above results follows the ideas@29–
32# used for the calculation of the order-parameter fluct
tions in the equilibrium transverse Ising model; namely,
correlations are expressed as a Pfaffian of a block Toe
matrix constructed of 232 matrices. Then, in the equilib
rium case, the analysis of the Toeplitz matrices in
asymptotic limit of r→`, and h→1 with r (h21) kept
fixed, yieldsCx

eq(r );r 21/4F„r (h21)…. A similar asymptotic
analysis in the current-carrying phase, using the scaling l
r→`, andk;(l2lc)

1/2→0 with kr kept finite, results in
Eq. ~40!. The derivation is rather technical and we sh
present it, together with the analysis of other scaling lim
in a separate publication@33#.

Once the correlations are known, the fluctuations can
calculated from

^Mx
2&5NF112(

r>1
Cx~r !G}NE

0

1`

drCx~r !, ~41!

where changing the sum into integral is again allowed
cause of the diverging characteristic length scalek21. Using
now the scaling form~40!, we find that
z

e,

05612
n-
e

f-

e

t

al-

-
e
tz

e

it

l
,

e

-

^Mx
2&}Nk23/4}N jE

23/8. ~42!

The above expression demonstrates the decrease of flu
tions with increasing flux and it also tells us how the Gau
ian distribution crosses over to the nontrivial shape obser
at the critical point.

V. FINAL REMARKS

Returning to the problems discussed in the Introducti
we can see that the connection between NESS and cri
states in terms of~universal! distribution functions is not
straightforward. NESS is generated by fluxes, and flu
may or may not generate long-range correlations. There
numerous examples@1–3# where the fluxes are spatially lo
calized and long-range correlations do not develop~unless
the system is at a special point in the parameter spa!.
Clearly, in such cases, one cannot hope for a general des
tion to emerge. If the fluxes are global, as is the case for
model treated in the present paper, long-range correlation
emerge frequently@1–3#. Even in this case, however, it is fa
from trivial whether these correlations drive the system to
effectively critical state or whether they make the syst
more rigid.

The driven transverse Ising model treated above is an
ample where a global flux of energy generates long-ra
correlations but the resulting state becomes more rigid in
sense that the fluctuations are decreased due to the pre
of the flux. Driven diffusive systems@1# provide other ex-
amples@34# where the fluctuations decrease while the flux
induce power-law correlations. Thus we should conclu
that, in general, the power-law correlations generated by
bal fluxes cannot be the source of possible universality
nonequilibrium distribution functions. It remains, howeve
an intriguing question whether the weak long-range inter
tions supported by global fluxes can underlie a kind
‘‘weak’’ universality classification of distributions in NESS
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50, 3530~1994!.

@9# T. Antal, M. Droz, G. Gyo¨rgyi, and Z. Ra´cz, Phys. Rev. Lett.
87, 240601~2001!; Phys. Rev. E65, 046140~2002!.

@10# S.T. Bramwell, P.C.W. Holdsworth, and J.-F. Pinton, Natu
~London! 396, 552 ~1998!.

@11# E. Marinari, A. Pagnani, G. Parisi, and Z. Ra´cz, Phys. Rev. E
65, 026136~2002!.

@12# G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold
Phys. Rev. Lett.84, 1351~2000!.

@13# G. Tripathy and W. van Saarloos, Phys. Rev. Lett.85, 3556
~2000!.
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