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Erdős-Rényi Random Graph

1.  Start with N isolated nodes (and N²/2 pairs)

Number of links L at time t:  L=N/2×t=Nt/2
Average degree D=2L/N=t

Average degree k →k+1 at rate 1

2.  Introduce links at constant rate N/2
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Random Recursive Tree

1.  Introduce nodes one at a time
2.  Attach to one earlier node randomly and uniformly

NkBasic observable:      ,  the degree distribution
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gain of nodes 
of degree k

loss of nodes 
of degree kconvert rate

to probability

input of nodes 
of degree 1

solution: nk = 2−k

solving one by one:
N0 = 1

N , N1 = N
2 , N2 = N

4 ,. . .

nk = nk−1−nk + δk,1

ansatz: Nk ! N nk gives

dNk
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Master 
Equation

“time” 
variable N
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probability r
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attachment rate to ancestor node:
∝ number of upstream neighbors

Uniform Attachment + Redirection Krapivsky & 
SR (2001) 

= Linear* Preferential Attachment! *shifted
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Ṅj = 1; Ṁ1 ≡
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jṄj = 2



Moment equations:
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∑

j

jṄj = 2

These suggest: A(N) =
∑

j

jγ Nj ∝ µ(γ)N for 0 ≤ γ ≤ 1

Nk(N) ≡ N nk

Converts rate eqns. to linear recursions
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zero γ ≤ 2

non-zero γ > 2
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Shifted Linear Attachment Ak = k + λ
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Ak = k:Linear Attachment
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Size of generation g ≡ Lg
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=
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rate equation: 

Lg =
(lnN)g

g!
Solution: 

defines last generationLg = 1

diameter ∼ 2e lnN

−→ gmax ∼ e lnN
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morally similar solution as for r=0
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 Outlook

Some open questions/future possibilities:
Why is linear preferential attachment so generic?

The master equation is a powerful tool to analyze 
incrementally growing, complex networks.
Wide range of degree distributions arise by 
preferential attachment; non-universal power law 
for linear preferential attachment.

Topological features and more general models are 
treatable by the ME approach.

Incorporation of spatial structure.
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incrementally growing, complex networks.
Wide range of degree distributions arise by 
preferential attachment; non-universal power law 
for linear preferential attachment.

Topological features and more general models are 
treatable by the ME approach.

Formulation & analysis of realistic social network models 
and their dynamics (communities, frustration, etc.).

Incorporation of spatial structure.


