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Dynamic scaling of fronts in the quantum XX chain
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The dynamics of the transverse magnetization in the zero-tempekXirbain is studied with emphasis on
fronts emerging from steplike initial magnetization profiles. The fronts move with fixed velocity and display a
staircase like internal structure whose dynamic scaling is explored both analytically and numerically. The front
region is found to spread with time subdiffusively with the height and the width of the staircase steps scaling
ast™¥3 andt!3, respectively. The areas under the steps are independent of time; thus the magnetization relaxes
in quantized “steps” of spin flips.

DOI: 10.1103/PhysReVvE.69.066103 PACS nun®)er05.60.Gg, 64.60.Ht, 75.10.Jm, 72.2%

[. INTRODUCTION reversed spin with respect to the aligned initial state. These
reversed spins move with the front velocity, keep their iden-
Fronts often emerge in relaxation processes. Simple exity with respect to other reversed spins, and their spatial
amples are the domain walls generated in phase-separatigpread is subdiffusive. Thus the magnetization relaxes in
dynamics[1] but there is a long list of front¢also called well defined quantized “steps(in space and in time It
shocks, active zones, reaction zones,)etsulting from un-  should be noted that our results suggest that the quantum
stable dynamics in various physical, chemical, and biologicafronts and, in particular, the steps carrying a unit of spin
systemg2,3]. Furthermore, fronts can also emerge due to thdlips, may be envisioned as ingredients in controlled trans-
initial spatial separation of stable and unstable stptgs port of bitwise information in magnetic nanostructures.
Apart from being the instruments of relaxation, the impor- We begin our calculations by presenting tK&X model
tance of fronts is also due to their “catalytic” nature; namely,and describing the known results about the large-time dy-
structures are built in therfb] and patterns often emerge in namics of the fronts emerging from a steplike initial magne-
the wake of moving front$6]. Thus it is not surprising that tization profile(Sec. I). Next, in(Sec. Ill), a scaling limit is
much effort has been devoted to the description of their spanvestigated which reveals the details of magnetization pro-
tiotemporal structurg2,4]. file in the front region. The physical meaning of the staircase
In contrast to fronts in classical systems, not much isshape of the profile is discussed(®ec. IV), followed by a
known about quantum fronts. The examples we are aware dist of related problems that remain to be solv&sc. \).
are restricted to quantum spin chains: fronts or shocks have

been seen in th&X model [7-9], in the transverse Ising Il. FRONTS IN THE XX MODEL: DYNAMICS
chain[10,11, as well as in the Heisenberg modél,13. AND GLOBAL SCALING

The detailed structures of the front regions, however, have

not been elucidated even in these cases. The system we investigate is tX chain defined by the

Having in mind the importance of the front dynamics, we Hamiltonian
set out to investigate the fronts emerging in the quantm -
chain. The transverse magnetization in this model is con- -
served and its relaxation is known to be governed by fronts H=- > (ﬁx%ﬁ %yS%/+l)v 1)

. e . . . .. j=-N+1

provided an initial state with a spatial separation of distinct
magnetizationg+my) is prepared8]. The problem with such  \yhere the Spins" (a=x,y,2) are 1/2 times the Pauli matri-
initial conditions is exactly solvable and thus we can follow ceg sityated at the sitp=0, 1, ..., HN-1),N] of a one-
the evolution of the spatiotemporal structure of the front ingimensional lattice. Free boundary conditions are used, and
detail. the thermodynamic limiN— o is assumed throughout the

The main result of our calculations is that, in addition 10 yaher The physical quantities are measured in their natural
the. known[8] gI.oba}I scalmg(fmlte front ye_lomty and vyell units: energy inJ%2 where J is the nearest-neighbor cou-
defined magnetization profile in thie- < limit), there exists g magnetization i, length in units of the lattice con-

a dynamic scaling regime in the front, and the associatediznta and time in 10%.
scaling function exposes a staircase structure in the magne- o, principal aim is to investigate the time evolution of

tization profile. An important feature of the steps in the stair-,o (globally conservepitransverse magnetization
case is that, while their height decreasestas and their

width increases as'®, the areas under the steps are time- m(n,t) = (¢|Si(1)| @) (2)
independent constants and, furthermore, the constants are the

same for all the steps. The value of the constanice the  emerging from an initial statgp) with a steplike magnetiza-
magnetic moment of a spinndicates that a step carries a tion profile
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FIG. 1. Magnetization profiles emerging from steplike initial
conditions[Egs.(3) and(6)]. The large-time scaling limit is shown
by dashed line$Eq. (5) for my=0.5].
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Since the dynamics following fronH can be described
[14,15 in terms of local fermionic operato(sn,cﬁ) whose
Fourier transforms diagonaliZd, and sinceS, can be ex-
pressed through the local fermionic operatorsszﬁlscﬁcn
-1/2, theevaluation of{¢|S(t)|¢) is a relatively simple ex-
ercise. The calculations have been carried oy8]rwith the

result forn= 1 given through the Bessel functions of the first

kind [16]

1 n-1

mn.y == 2350 - 2 v, (@)
=1

while the expression fon<0 is obtained from symmetry
considerationan(n,t)=-m(-n+1,t). The global scaling of
m(n,t) emerges in th@— +oo, t— +c, andn/t=finite limit
where m(n,t) can be written in a scaling fornrm(n,t)
—®(n/t), and the scaling functio®(v) is given[8] by

13 dm(n,t)

1/3

7Z=(n-t)/t

FIG. 2. Scaling in the front region. The magnetization measured

from m(t,t) is magnified ag*3sm(n,t) while the distance from the
front position is scaled ag=(n-t)/t'3. The analytically derived
scaling limit[Eq. (11)] is indistinguishable from the= 10P curve in
the z range plotted.
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B() = {— m tarcsirv) for0O=<v =<1, 5)

-1/2 forv=1.

The my=0.5 curve in Fig. 1 show(v) together with the
shape ofm(n,t) plotted againstv=n/t at finite time (t
=200). As one can see, the magnetization displays a staircase
structure near the edge of the frant't~1). Our main con-
cern will be the scaling propertiém both space and timef

this staircase structure.

For possible applications, it may be important that the
front properties were tunable. Possibility for tuning can be
seen by solving the problem for more general steplike initial
states

my, for —-N<n=0,

6
-my forlsn<N, ©

(@ SH(O) @y = {

where|<p%> is constructed by joining two half chains which
are the ground states of tieX model at magnetizationsmy,.

The expression to be analyzed for this case can be taken
from Ref.[8], Eq. 12. It is more involved but its numerical
evaluation does not pose difficulties. We shall not describe
the numerical work but results fany# 0 will be discussed
and displayedFigs. 1 and R

Ill. LOCAL SCALING IN THE FRONT

The present work on the dynamic scaling of the magneti-
zation profile around the edge of the fram=t) originates
from our numerical studies of the deviation of the magneti-
zation sm(n,t)=m(n,t)-m(t,t) from its front valuem(t,t).

As one can observe in Fig. 2, a well defined scaling function
emerges in the limit— o provided the magnetization and
the region aroundh=t are scaled by® andt™%3 respec-
tively.

An analytic understanding of the scaling seen in Fig. 2
can be developed by first using Ed) to write ém(n,t) as

r
-1

+ 2,34t forn<t,
I=n

sm(nt)=4 0 forn=t, (7)
n-1

-2 J4t) forn>t.

I=t

Next, one can observe that, in what we call the scaling re-
gime (t—% , n—o, and|t—n|=tY3), the sums above con-
tain Bessel functions whose indé} and argumentt) differ
from each other at most Y-t/ ~ O(t3). This suggests the
use of the following asymptotic expansion of Bessel function
[16]:

Jo(n+zn®) = 230 1BA (- 213 + O(,n7Y), ()
where Aiz) is the Airy function. Indeed, in the scaling re-
gime, the terms in the sums in Eg) can be written as
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~t2—/3

2/3 (21/3| -t 1 | -t TABLE I. Magnetic moments carried by the ste@sea below
|1/3 !

J) =~ %Aiz s (99  the steps in the magnetization profileat finite times (t
=10%,10%,10P). The borders of the steps were defined by the inflec-
where F(y)=223Ai2(213y). Note that the last expression in tion points in the magnetization curve.
Eq. (9) is obtained by replacingby t in the factors!’® and
1273, an approximation that is valid in the scaling regime. Step nos us (t=10°) us (t=10% s (t=10°)
The last step in derivingm(n,t) is the calculation of the

. . . . 1 1.0183 1.0420 1.0379
sums in Eq(7) using Eq.(9). In the scaling regime, the sums 2 0.9707 1.0154 1.0094
can be replaced by integrals and, introducing the varigble ' : :
=(1-t)/t¥3, both sums yield the same expression. As a con- 3 1.0371 1.0080 0.9934
sequence, we obtain a single scaling formrfort as well as 4 0.9418 0.9710 1.0124
for n<t, 5 0.9022 0.9970 0.9986

1 i 6 0.9588 1.0070 0.9860
sm(n,t) = Te,G(an) , (10) 7 1.0123 0.9434 1.0128
t t 8 0.9286 0.9866 1.0037
where the scaling functios(z) is explicitly given by the
following integral:
W, = 1137, -2 = [72/(39)]Y2. (13

z z
G(2) = ‘f dyHy) =~ 22/3f dyAi?(2"%y). (1) comparing Eqs(12) and (13) we see thahw,=1, thus ar-
0 0 riving at an important property of the staircase structure,
The scaling form(10) and the scaling functionll) are our namely, the steps of the staircase carry a unit of magnetiza-
central result. The staircase shape of the front follows frontion.

Eg. (11) while the scaling form(10) shows that the width of In order to see the relevance of the above result and to
the steps increases as~tY3 while their heightgmeasured develop a picture about it, let us consider the magnetization
from thez— o level) decrease as~t/3, flux in the front region. The total transverse magnetization
M?=%,F is conserved and so one can define the local mag-

IV QUANTIZED MAGNETIZATION TRANSPORT netization fluxJ33=SS,.,~ $\S..,, which is related to the lo-

An important feature of the scaling given by H40) is cal magnetization through the continuity equation. Thus, not
that sincewx h~t° the areas under the steps are constantsSurprisingly, one can derive a simple expression for the time
Thus a step carries a given amount of magnetic momgnt evolution of the expectation value df as well:
=ws X hg where the subscript denotes thesth step counted "
from the edge of the front. In principless could depend on . -
sbut their nSmericaI evaluatiorrl)for tlrjl?ssteps nearr'zhe edge of i(n,0) = (@50 @) = lZ Ji(1)Jy44(1).
the front(1<s=<8) (see Table) strongly suggests thais -
=1 (the deviations from 1 can be attributed to the finitenessThe analysis of §j(n,t)=j(n,t)—j(t,t) parallels that of

(14

of the sums at finite). om(n,t) and yields the same scaling structure in the front:
The us=1 result can be derived for large-ordes>1)

steps. Indeed, as can be seen from Fig. 1, the height of the . - 1 (n—t) -

step can be estimated from the global scaling function an.Y t1’3(3 t1/3 o o). (15

m(n,t)=-mLarcsifl-z/t?3) ~-1/2+7"12[7t"13,  and _ s . .
thus &nzh;w‘%’ﬂt‘m wherez, is the scaling variable Adding G(«0)/t*° to both sides of the above equations, and

at thesth step. Its value is found by finding trsth zero of ~ t@king into account thatj(n—c,)=0 and m(n—c,t)
G'(2) which, in turn[see Eq(11)], is obtained from theth :_—1/2, an.d, furthermore, remgmberlng that the frpnt moves
solution of the A{2'/32)=0 equation. The largs-asymptotic with veloqlty v=1, we can write the above equations in a
of the sth zero is giver{16] by |z~ (37s)?/2, and thus form that is easy to interpret:

hg = [3s/(72t)]*3. (12 j(nt) = u[m(n,t) - (— })} (16)

We need now to find the width of theh step. Defining the 2

borders of the steps as the consecutive inflection points oBince the sum ofm(n,t)—(-1/2)] for an interval gives the

the staircase, one can see from Eii) that the width of the number of up spins in that interval, the meaning of the unit
step is given by the consecutive zeros of (8%z2)=0. The  area under the steps is as follows. The steps represent spatial
larges asymptotics of these zeros are known adaié] and  intervals in which a single up spin is spread in the sea of
we find [Zs.1—Z) =[72/(39)]3. We should remember now down spins. These up spins behave like particles, they move
thathg was calculated for the originglinscalegl magnetiza-  with velocity v=1, and provide the magnetization flux. Fur-
tion, and the width of the step must also be obtained irthermore, they are localized in the sense that their spatial
unscaled spatial coordinates. Consequently, we should scas@read is subdiffusivé~t'/3) [18]. The picture thus emerg-
[Z:1—2Z4 by t3, and thus ing is somewhat reminiscent of the hard-core boson descrip-
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FIG. 3. Magnetization profiles at 10° for different initial val-
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gives N(t,my) for small N, as well. Indeed, e.g., Eq17)
yields N= 3 for t=10° andmy=0.1 while the corresponding
curve on Fig. 3 displaybl=4 steps.

An important feature of Eq.17) is the strong dependence
of the step number on the initial magnetizatio~ mg).
This gives a sensitive control over how many steps arrive at
a given point at a given time. Thus, in principle, one can
imagine applications with the steps transferring bits of infor-
mation in magnetic nanostructures.

V. FINAL REMARKS

The aim of the present study was to draw attention to the
remarkable features of quantum fronts. In order to exploit

uesmy [Eq. (6)]. The inset with the curves shifted vertically down hege features in applications, answers would be required to a
(M=m-0.5+m,) demonstrates that the steps in the front region are,;mper of nontrivial questions. First, can fronts with prop-

independent of the value ofy,.

tion of the XX model near its critical external field.7].

erties found in theXX model be observed in other spin
chains? In particular, are they present in nonintegrable sys-
tems? Second, how does the step structure change at small

From the point of view of possible applications, it is im- Put finite temperatures? Finally, are the front properties ro-
portant that the staircase structure can be observed for othBHSt enough to survive small perturbations arising from im-

initial conditions as well. Using initial staté$mo> with £mg

steplike profile as described in E®), we found numerically
that the staircase emerges agésee Fig. 3. Furthermore,

purities? These are difficult problems but the available ana-
lytical and numerical techniques may be sufficient to tackle
them.

the steps of the staircase were found to have the same size In summary, our calculations exposed a dynamic scaling

independently of the values afy (see inset in Fig. 8 What
is varied withmy is the number of step(t,my) in the stair-
case.

We can estimateéN(t,mg) by assuming(on the basis of

regime in the motion of fronts in the quantuxX model. The
fronts display a staircase magnetization profile which has a
simple interpretation in terms of single spin flips spread over
the spatial extent of the steps. Whether these fronts have a

numerical solutionsthat scaling extends to the whole front direct application is an open question but their properties are
region, up to the point whema reaches the steady state value intriguing enough to look for similar structures in more com-

of m=0. ThenN(t,mp) is found by locating theNth step

which has a widthwy such that a single spin flip changes the

magnetization from my to 0. Sincemywy is the difference
between the number of up and down spins in Hib step,
the above consideration gives the conditiomywy+1=0.
For largeN, Eq. (13) gives the widthwy, and we obtain

(17)

It should be noted that E@L3) is an excellent approximation
also for step numbers of the order of unity, and so @4)

N(t,mo) =~ 7?mpt/3.

plex spin chains.
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