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The dynamics of the transverse magnetization in the zero-temperatureXX chain is studied with emphasis on
fronts emerging from steplike initial magnetization profiles. The fronts move with fixed velocity and display a
staircase like internal structure whose dynamic scaling is explored both analytically and numerically. The front
region is found to spread with time subdiffusively with the height and the width of the staircase steps scaling
ast−1/3 andt1/3, respectively. The areas under the steps are independent of time; thus the magnetization relaxes
in quantized “steps” of spin flips.
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I. INTRODUCTION

Fronts often emerge in relaxation processes. Simple ex-
amples are the domain walls generated in phase-separation
dynamics[1] but there is a long list of fronts(also called
shocks, active zones, reaction zones, etc.) resulting from un-
stable dynamics in various physical, chemical, and biological
systems[2,3]. Furthermore, fronts can also emerge due to the
initial spatial separation of stable and unstable states[4].

Apart from being the instruments of relaxation, the impor-
tance of fronts is also due to their “catalytic” nature; namely,
structures are built in them[5] and patterns often emerge in
the wake of moving fronts[6]. Thus it is not surprising that
much effort has been devoted to the description of their spa-
tiotemporal structure[2,4].

In contrast to fronts in classical systems, not much is
known about quantum fronts. The examples we are aware of
are restricted to quantum spin chains: fronts or shocks have
been seen in theXX model [7–9], in the transverse Ising
chain [10,11], as well as in the Heisenberg model[12,13].
The detailed structures of the front regions, however, have
not been elucidated even in these cases.

Having in mind the importance of the front dynamics, we
set out to investigate the fronts emerging in the quantumXX
chain. The transverse magnetization in this model is con-
served and its relaxation is known to be governed by fronts
provided an initial state with a spatial separation of distinct
magnetizationss±m0d is prepared[8]. The problem with such
initial conditions is exactly solvable and thus we can follow
the evolution of the spatiotemporal structure of the front in
detail.

The main result of our calculations is that, in addition to
the known[8] global scaling(finite front velocity and well
defined magnetization profile in thet→` limit ), there exists
a dynamic scaling regime in the front, and the associated
scaling function exposes a staircase structure in the magne-
tization profile. An important feature of the steps in the stair-
case is that, while their height decreases ast−1/3 and their
width increases ast1/3, the areas under the steps are time-
independent constants and, furthermore, the constants are the
same for all the steps. The value of the constant(twice the
magnetic moment of a spin) indicates that a step carries a

reversed spin with respect to the aligned initial state. These
reversed spins move with the front velocity, keep their iden-
tity with respect to other reversed spins, and their spatial
spread is subdiffusive. Thus the magnetization relaxes in
well defined quantized “steps”(in space and in time). It
should be noted that our results suggest that the quantum
fronts and, in particular, the steps carrying a unit of spin
flips, may be envisioned as ingredients in controlled trans-
port of bitwise information in magnetic nanostructures.

We begin our calculations by presenting theXX model
and describing the known results about the large-time dy-
namics of the fronts emerging from a steplike initial magne-
tization profile(Sec. II). Next, in (Sec. III), a scaling limit is
investigated which reveals the details of magnetization pro-
file in the front region. The physical meaning of the staircase
shape of the profile is discussed in(Sec. IV), followed by a
list of related problems that remain to be solved(Sec. V).

II. FRONTS IN THE XX MODEL: DYNAMICS
AND GLOBAL SCALING

The system we investigate is theXX chain defined by the
Hamiltonian

Ĥ = − o
j=−N+1

N−1

sSj
xSj+1

x + Sj
ySj+1

y d, s1d

where the spinsSj
a sa=x,y,zd are 1/2 times the Pauli matri-

ces situated at the sitesf j =0, ±1, . . . , ±sN−1d ,Ng of a one-
dimensional lattice. Free boundary conditions are used, and
the thermodynamic limitN→` is assumed throughout the
paper. The physical quantities are measured in their natural
units: energy inJ"2 where J is the nearest-neighbor cou-
pling, magnetization in", length in units of the lattice con-
stanta, and time in 1/J".

Our principal aim is to investigate the time evolution of
the (globally conserved) transverse magnetization

msn,td = kwuSn
zstduwl s2d

emerging from an initial stateuwl with a steplike magnetiza-
tion profile
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uwl = u ↑
−N+1

¯ ↑ ↑
0

↓
1

↓ ¯ ↓
N

l. s3d

Since the dynamics following fromĤ can be described
[14,15] in terms of local fermionic operatorsscn,cn

†d whose

Fourier transforms diagonalizeĤ, and sinceSn
z can be ex-

pressed through the local fermionic operators asSn
z=cn

†cn
−1/2, theevaluation ofkwuSn

zstduwl is a relatively simple ex-
ercise. The calculations have been carried out in[8] with the
result fornù1 given through the Bessel functions of the first
kind [16]

msn,td = −
1

2
J0

2std − o
l=1

n−1

Jl
2std, s4d

while the expression fornø0 is obtained from symmetry
considerationsmsn,td=−ms−n+1,td. The global scaling of
msn,td emerges in then→ +`, t→ +`, andn/ t=finite limit
where msn,td can be written in a scaling formmsn,td
→Fsn/ td, and the scaling functionFsvd is given [8] by

Fsvd = H− p−1 arcsinsvd for 0 ø v ø 1,

− 1/2 for v ù 1.
s5d

The m0=0.5 curve in Fig. 1 showsFsvd together with the
shape of msn,td plotted againstv=n/ t at finite time st
=200d. As one can see, the magnetization displays a staircase
structure near the edge of the frontsn/ t<1d. Our main con-
cern will be the scaling properties(in both space and time) of
this staircase structure.

For possible applications, it may be important that the
front properties were tunable. Possibility for tuning can be
seen by solving the problem for more general steplike initial
states

kwm0
uSn

zs0duwm0
l = Hm0 for − N , n ø 0,

− m0 for 1 ø n ø N,
s6d

whereuwm0
l is constructed by joining two half chains which

are the ground states of theXX model at magnetizations ±m0.
The expression to be analyzed for this case can be taken
from Ref. [8], Eq. 12. It is more involved but its numerical
evaluation does not pose difficulties. We shall not describe
the numerical work but results form0Þ0 will be discussed
and displayed(Figs. 1 and 3).

III. LOCAL SCALING IN THE FRONT

The present work on the dynamic scaling of the magneti-
zation profile around the edge of the frontsn< td originates
from our numerical studies of the deviation of the magneti-
zation dmsn,td=msn,td−mst ,td from its front valuemst ,td.
As one can observe in Fig. 2, a well defined scaling function
emerges in the limitt→` provided the magnetization and
the region aroundn< t are scaled byt1/3 and t−1/3, respec-
tively.

An analytic understanding of the scaling seen in Fig. 2
can be developed by first using Eq.(4) to write dmsn,td as

dmsn,td =5+ o
l=n

t−1

Jl
2std for n , t,

0 for n = t,

− o
l=t

n−1

Jl
2std for n . t.

s7d

Next, one can observe that, in what we call the scaling re-
gime (t→` , n→`, and ut−nu< t1/3), the sums above con-
tain Bessel functions whose indexsld and argumentstd differ
from each other at most byul − tu,Ost1/3d. This suggests the
use of the following asymptotic expansion of Bessel function
[16]:

Jnsn + zn1/3d < 21/3n−1/3Ai s− 21/3zd + Os,n−1d, s8d

where Aiszd is the Airy function. Indeed, in the scaling re-
gime, the terms in the sums in Eq.(7) can be written as

FIG. 1. Magnetization profiles emerging from steplike initial
conditions[Eqs.(3) and(6)]. The large-time scaling limit is shown
by dashed lines[Eq. (5) for m0=0.5].

FIG. 2. Scaling in the front region. The magnetization measured
from mst ,td is magnified ast1/3dmsn,td while the distance from the
front position is scaled asz=sn− td / t1/3. The analytically derived
scaling limit [Eq. (11)] is indistinguishable from thet=105 curve in
the z range plotted.
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Jl
2std <

22/3

l2/3 Ai2S21/3l − t

l1/3 D <
1

t2/3FS l − t

t1/3 D , s9d

whereFsyd=22/3Ai2s21/3yd. Note that the last expression in
Eq. (9) is obtained by replacingl by t in the factorsl1/3 and
l2/3, an approximation that is valid in the scaling regime.

The last step in derivingdmsn,td is the calculation of the
sums in Eq.(7) using Eq.(9). In the scaling regime, the sums
can be replaced by integrals and, introducing the variabley
=sl − td / t1/3, both sums yield the same expression. As a con-
sequence, we obtain a single scaling form forn. t as well as
for nø t,

dmsn,td =
1

t1/3GSn − t

t1/3 D , s10d

where the scaling functionGszd is explicitly given by the
following integral:

Gszd = −E
0

z

dyFsyd = − 22/3E
0

z

dyAi2s21/3yd. s11d

The scaling form(10) and the scaling function(11) are our
central result. The staircase shape of the front follows from
Eq. (11) while the scaling form(10) shows that the width of
the steps increases asw, t1/3 while their heights(measured
from thez→` level) decrease ash, t−1/3.

IV. QUANTIZED MAGNETIZATION TRANSPORT

An important feature of the scaling given by Eq.(10) is
that sincew3h, t0 the areas under the steps are constants.
Thus a step carries a given amount of magnetic momentms
=ws3hs where the subscripts denotes thesth step counted
from the edge of the front. In principle,ms could depend on
s but their numerical evaluation for the steps near the edge of
the front s1øsø8d (see Table I) strongly suggests thatms

=1 (the deviations from 1 can be attributed to the finiteness
of the sums at finitet).

The ms=1 result can be derived for large-orderss@1d
steps. Indeed, as can be seen from Fig. 1, the height of the
step can be estimated from the global scaling function
msn,td=−p−1 arcsins1−z/ t2/3d<−1/2+p−1Î2uzut−1/3, and
thus dm=hs=p−1Î2uzsut−1/3, wherezs is the scaling variable
at thesth step. Its value is found by finding thesth zero of
G8szd which, in turn[see Eq.(11)], is obtained from thesth
solution of the Ais21/3zd=0 equation. The large-s asymptotic
of the sth zero is given[16] by uzsu<s3psd2/3/2, and thus

hs = f3s/sp2tdg1/3. s12d

We need now to find the width of thesth step. Defining the
borders of the steps as the consecutive inflection points on
the staircase, one can see from Eq.(11) that the width of the
step is given by the consecutive zeros of Ai8s21/3z̃sd=0. The
large-s asymptotics of these zeros are known again[16] and
we find uz̃s+1− z̃su<fp2/ s3sdg1/3. We should remember now
that hs was calculated for the original(unscaled) magnetiza-
tion, and the width of the step must also be obtained in
unscaled spatial coordinates. Consequently, we should scale
uz̃s+1− z̃su by t1/3, and thus

ws = t1/3uz̃s+1 − z̃su < fp2t/s3sdg1/3. s13d

Comparing Eqs.(12) and (13) we see thathsws=1, thus ar-
riving at an important property of the staircase structure,
namely, the steps of the staircase carry a unit of magnetiza-
tion.

In order to see the relevance of the above result and to
develop a picture about it, let us consider the magnetization
flux in the front region. The total transverse magnetization
Mz=onSn

z is conserved and so one can define the local mag-

netization fluxĴn
z=Sn

ySn+1
x −Sn

xSn+1
y , which is related to the lo-

cal magnetization through the continuity equation. Thus, not
surprisingly, one can derive a simple expression for the time

evolution of the expectation value ofĴn
z as well:

jsn,td ; kwuĴn
zstduwl = o

l=n

`

JlstdJl+1std. s14d

The analysis of d jsn,td= jsn,td− jst ,td parallels that of
dmsn,td and yields the same scaling structure in the front:

d jsn,td =
1

t1/3GSn − t

t1/3 D = dmsn,td. s15d

Adding Gs`d / t1/3 to both sides of the above equations, and
taking into account thatjsn→` ,td=0 and msn→` ,td
=−1/2, and, furthermore, remembering that the front moves
with velocity v=1, we can write the above equations in a
form that is easy to interpret:

jsn,td = vFmsn,td − S−
1

2
DG . s16d

Since the sum offmsn,td−s−1/2dg for an interval gives the
number of up spins in that interval, the meaning of the unit
area under the steps is as follows. The steps represent spatial
intervals in which a single up spin is spread in the sea of
down spins. These up spins behave like particles, they move
with velocity v=1, and provide the magnetization flux. Fur-
thermore, they are localized in the sense that their spatial
spread is subdiffusives,t1/3d [18]. The picture thus emerg-
ing is somewhat reminiscent of the hard-core boson descrip-

TABLE I. Magnetic moments carried by the steps(area below
the steps in the magnetization profile) at finite times st
=103,104,105d. The borders of the steps were defined by the inflec-
tion points in the magnetization curve.

Step no.s ms st=103d ms st=104d ms st=105d

1 1.0183 1.0420 1.0379

2 0.9707 1.0154 1.0094

3 1.0371 1.0080 0.9934

4 0.9418 0.9710 1.0124

5 0.9022 0.9970 0.9986

6 0.9588 1.0070 0.9860

7 1.0123 0.9434 1.0128

8 0.9286 0.9866 1.0037
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tion of theXX model near its critical external field[17].
From the point of view of possible applications, it is im-

portant that the staircase structure can be observed for other
initial conditions as well. Using initial statesuwm0

l with ±m0

steplike profile as described in Eq.(6), we found numerically
that the staircase emerges again(see Fig. 3). Furthermore,
the steps of the staircase were found to have the same size
independently of the values ofm0 (see inset in Fig. 3). What
is varied withm0 is the number of stepsNst ,m0d in the stair-
case.

We can estimateNst ,m0d by assuming(on the basis of
numerical solutions) that scaling extends to the whole front
region, up to the point wherem reaches the steady state value
of m=0. Then Nst ,m0d is found by locating theNth step
which has a widthwN such that a single spin flip changes the
magnetization from −m0 to 0. Sincem0wN is the difference
between the number of up and down spins in theNth step,
the above consideration gives the condition −m0wN+1=0.
For largeN, Eq. (13) gives the widthwN, and we obtain

Nst,m0d < p2m0
3t/3. s17d

It should be noted that Eq.(13) is an excellent approximation
also for step numbers of the order of unity, and so Eq.(17)

gives Nst ,m0d for small N, as well. Indeed, e.g., Eq.(17)
yields N<3 for t=103 andm0=0.1 while the corresponding
curve on Fig. 3 displaysN<4 steps.

An important feature of Eq.(17) is the strong dependence
of the step number on the initial magnetizationsN,m0

3d.
This gives a sensitive control over how many steps arrive at
a given point at a given time. Thus, in principle, one can
imagine applications with the steps transferring bits of infor-
mation in magnetic nanostructures.

V. FINAL REMARKS

The aim of the present study was to draw attention to the
remarkable features of quantum fronts. In order to exploit
these features in applications, answers would be required to a
number of nontrivial questions. First, can fronts with prop-
erties found in theXX model be observed in other spin
chains? In particular, are they present in nonintegrable sys-
tems? Second, how does the step structure change at small
but finite temperatures? Finally, are the front properties ro-
bust enough to survive small perturbations arising from im-
purities? These are difficult problems but the available ana-
lytical and numerical techniques may be sufficient to tackle
them.

In summary, our calculations exposed a dynamic scaling
regime in the motion of fronts in the quantumXX model. The
fronts display a staircase magnetization profile which has a
simple interpretation in terms of single spin flips spread over
the spatial extent of the steps. Whether these fronts have a
direct application is an open question but their properties are
intriguing enough to look for similar structures in more com-
plex spin chains.
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